| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Add read-only system register ID_MMFR5_EL1 and unit tests.
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69039
llvm-svn: 375010
|
|
|
|
|
|
|
|
|
| |
This helps with testing and debugging for paths that are assumed
absolute.
It also uses a FileError to provide the file path it's trying to open.
llvm-svn: 375008
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, BPF backend is doing truncation elimination. If one truncation
is performed on a value defined by narrow loads, then it could be redundant
given BPF loads zero extend the destination register implicitly.
When the definition of the truncated value is a merging value (PHI node)
that could come from different code paths, then checks need to be done on
all possible code paths.
Above described optimization was introduced as r306685, however it doesn't
work when there is back-edge, for example when loop is used inside BPF
code.
For example for the following code, a zero-extended value should be stored
into b[i], but the "and reg, 0xffff" is wrongly eliminated which then
generates corrupted data.
void cal1(unsigned short *a, unsigned long *b, unsigned int k)
{
unsigned short e;
e = *a;
for (unsigned int i = 0; i < k; i++) {
b[i] = e;
e = ~e;
}
}
The reason is r306685 was trying to do the PHI node checks inside isel
DAG2DAG phase, and the checks are done on MachineInstr. This is actually
wrong, because MachineInstr is being built during isel phase and the
associated information is not completed yet. A quick search shows none
target other than BPF is access MachineInstr info during isel phase.
For an PHI node, when you reached it during isel phase, it may have all
predecessors linked, but not successors. It seems successors are linked to
PHI node only when doing SelectionDAGISel::FinishBasicBlock and this
happens later than PreprocessISelDAG hook.
Previously, BPF program doesn't allow loop, there is probably the reason
why this bug was not exposed.
This patch therefore fixes the bug by the following approach:
- The existing truncation elimination code and the associated
"load_to_vreg_" records are removed.
- Instead, implement truncation elimination using MachineSSA pass, this
is where all information are built, and keep the pass together with other
similar peephole optimizations inside BPFMIPeephole.cpp. Redundant move
elimination logic is updated accordingly.
- Unit testcase included + no compilation errors for kernel BPF selftest.
Patch Review
===
Patch was sent to and reviewed by BPF community at:
https://lore.kernel.org/bpf
Reported-by: David Beckett <david.beckett@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 375007
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch implements the `TargetInstrInfo::verifyInstruction` hook for RISC-V. Currently the hook verifies the machine instruction's immediate operands, to check if the immediates are within the expected bounds. Without the hook invalid immediates are not detected except when doing assembly parsing, so they are silently emitted (including being truncated when emitting object code).
The bounds information is specified in tablegen by using the `OperandType` definition, which sets the `MCOperandInfo`'s `OperandType` field. Several RISC-V-specific immediate operand types were created, which extend the `MCInstrDesc`'s `OperandType` `enum`.
To have the hook called with `llc` pass it the `-verify-machineinstrs` option. For Clang add the cmake build config `-DLLVM_ENABLE_EXPENSIVE_CHECKS=True`, or temporarily patch `TargetPassConfig::addVerifyPass`.
Review concerns:
- The patch adds immediate operand type checks that cover at least the base ISA. There are several other operand types for the C extension and one type for the F/D extensions that were left out of this initial patch because they introduced further design concerns that I felt were best evaluated separately.
- Invalid register classes (e.g. passing a GPR register where a GPRC is expected) are already caught, so were not included.
- This design makes the more abstract `MachineInstr` verification depend on MC layer definitions, which arguably is not the cleanest design, but is in line with how things are done in other parts of the target and LLVM in general.
- There is some duplication of logic already present in the `MCOperandPredicate`s. Since the `MachineInstr` and `MCInstr` notions of immediates are fundamentally different, this is currently necessary.
Reviewers: asb, lenary
Reviewed By: lenary
Subscribers: hiraditya, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67397
llvm-svn: 375006
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Even though writelane doesn't have the same constraints as other valu
instructions it still can't violate the >1 SGPR operand constraint
Due to later register propagation (e.g. fixing up vgpr operands via
readfirstlane) changing writelane to only have a single SGPR is tricky.
This implementation puts a new check after SIFixSGPRCopies that prevents
multiple SGPRs being used in any writelane instructions.
The algorithm used is to check for trivial copy prop of suitable constants into
one of the SGPR operands and perform that if possible. If this isn't possible
put an explicit copy of Src1 SGPR into M0 and use that instead (this is
allowable for writelane as the constraint is for SGPR read-port and not
constant-bus access).
Reviewers: rampitec, tpr, arsenm, nhaehnle
Reviewed By: rampitec, arsenm, nhaehnle
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, mgorny, yaxunl, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D51932
Change-Id: Ic7553fa57440f208d4dbc4794fc24345d7e0e9ea
llvm-svn: 375004
|
|
|
|
|
|
|
|
| |
to fix warning
Seems to be just a typo - now matches other instances which do something similar
llvm-svn: 374995
|
|
|
|
| |
llvm-svn: 374994
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is something of a workaround to avoid a crash later on in type
legalizer (WidenVectorResult()).
Also added some f16 tests, including a non-working v3f16 case with
a FIXME.
Reviewers: arsenm, tpr, nhaehnle
Reviewed By: arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68865
llvm-svn: 374993
|
|
|
|
|
|
|
|
| |
while I investigate the PPC build bot failures.
This reverts commit ad763751565b9663bc338fa2ca5ade86c6ca22ec.
llvm-svn: 374992
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Currently Thumb2InstrInfo.cpp uses a register class which is
auto-generated by tablegen. Such approach is fragile because
auto-generated classes might change when other register classes are
added. For example, before https://reviews.llvm.org/D62667
we were using GPRPair_with_gsub_1_in_rGPRRegClass, but had to
change it to GPRPair_with_gsub_1_in_GPRwithAPSRnospRegClass
because the former class stopped being generated (this did not change
the functionality though).
This patch adds a register class consisting of even-odd GPR register
pairs from (R0, R1) to (R10, R11), which excludes (R12, SP) and uses
it in Thumb2InstrInfo.cpp instead of
GPRPair_with_gsub_1_in_GPRwithAPSRnospRegClass.
Reviewers: ostannard, simon_tatham, dmgreen, efriedma
Reviewed By: simon_tatham
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69026
llvm-svn: 374990
|
|
|
|
|
|
| |
warnings. NFCI.
llvm-svn: 374986
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Extend the SI Load/Store optimizer to merge MIMG load instructions. Handle
different flavours of image_load and image_sample instructions.
When the instructions of the same subclass differ only in dmask, merge
them and update dmask accordingly.
Reviewers: nhaehnle
Reviewed By: nhaehnle
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64911
llvm-svn: 374984
|
|
|
|
|
|
|
|
|
|
| |
Instead of inserting everything after the 'root' of the reduction,
insert all instructions as close to their operands as possible. This
can help reduce register pressure.
Differential Revision: https://reviews.llvm.org/D67392
llvm-svn: 374981
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds the initial plumbing to support optimisation remarks in
the IR hardware-loop pass.
I have left a todo in a comment where we can improve the reporting,
and will iterate on that now that we have this initial support in.
Differential Revision: https://reviews.llvm.org/D68579
llvm-svn: 374980
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In LiveDebugVariables.cpp:
Prior to this patch, UserValues were grouped into linked list chains. Each
chain was the union of two sets: { A: Matching Source variable } or
{ B: Matching virtual register }. A ptr to the heads (or 'leaders')
of each of these chains were kept in a map with the { Source variable } used
as the key (set A predicate) and another with { Virtual register } as key
(set B predicate).
There was a search through the chains in the function getUserValue looking for
UserValues with matching { Source variable, Complex expression, Inlined-at
location }. Essentially searching for a subset of A through two interleaved
linked lists of set A and B. Importantly, by design, the subset will only
contain one or zero elements here. That is to say a UserValue can be uniquely
identified by the tuple { Source variable, Complex expression, Inlined-at
location } if it exists.
This patch removes the linked list and instead uses a DenseMap to map
the tuple { Source variable, Complex expression, Inlined-at location }
to UserValue ptrs so that the getUserValue search predicate is this map key.
The virtual register map now maps a vreg to a SmallVector<UserVal *> so that
set B is still available for quick searches.
Reviewers: aprantl, probinson, vsk, dblaikie
Reviewed By: aprantl
Subscribers: russell.gallop, gbedwell, bjope, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D68816
llvm-svn: 374979
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to r374970, but I don't have a test for this.
PromoteTargetBoolean is intended to be use for legalizing an
operand that needs to be promoted. It picks its type based on
the return from getSetccResultType and is intended to be used
when we have freedom to pick the new type. But the return type
we need for WidenVecOp_SETCC is completely determined by the
type of the input node.
llvm-svn: 374972
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PromoteTargetBoolean calls getSetccResultType to get the return
type. But we were passing it the setcc result type rather than the
setcc input type. This causes an issue on X86 with avx512vl where
the setcc result type for vXf16 vectors is vXi16 while the
result type for vXi16 vectors is vXi1.
There's really no guarantee that getSetccResultType is the type
we need here. So now we just grab the extend type from
getExtendForContent and extend to the original result VT of the
node we're splitting.
llvm-svn: 374970
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: vsk, tejohnson, fhahn
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68924
llvm-svn: 374963
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
RedirectingFS
Before this patch, changing the working directory of the RedirectingFS
would just forward to its external file system. This prevented us from
having a working directory that only existed in the VFS mapping.
This patch adds support for a virtual working directory in the
RedirectingFileSystem. It now keeps track of its own WD in addition to
updating the WD of the external file system. This ensures that we can
still fall through for relative paths.
This change was originally motivated by the reproducer infrastructure in
LLDB where we want to deal transparently with relative paths.
Differential revision: https://reviews.llvm.org/D65677
llvm-svn: 374955
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
RTDyldObjectLinkingLayer allowed clients to register a NotifyEmitted function to
reclaim ownership of object buffers once they had been linked. This patch adds
similar functionality to ObjectLinkingLayer: Clients can now optionally call the
ObjectLinkingLayer::setReturnObjectBuffer method to register a function that
will be called when discarding object buffers. If set, this function will be
called to return ownership of the object regardless of whether the link
succeeded or failed.
Use cases for this function include debug dumping (it provides a way to dump
all objects linked into JIT'd code) and object re-use (e.g. storing an
object in a cache).
llvm-svn: 374951
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
InProcessMemoryManager used to make separate memory allocation calls for each
permission level (RW, RX, RO), which could lead to target-out-of-range errors
if data and code were placed too far apart (this was the source of failures in
the JITLink/AArch64 testcase when it was first landed).
This patch updates InProcessMemoryManager to allocate a single slab which is
subdivided between text and data. This should guarantee that accesses remain
in-range provided that individual object files do not exceed 1Mb in size.
This patch also re-enables the JITLink/AArch64 testcase.
llvm-svn: 374948
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Parsing the relocation entry information for 32-bit xcoff object file
including deal with the relocation overflow.
Reviewers: hubert.reinterpretcast, jasonliu, sfertile, xingxue.
Subscribers: hiraditya, rupprecht, seiya
Differential Revision: https://reviews.llvm.org/D67008
llvm-svn: 374946
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Two conditions could lead to infinite loops when processing PHI nodes in
SIFixSGPRCopies.
The first condition involves a REG_SEQUENCE that uses registers defined by both
a PHI and a COPY.
The second condition arises when a physical register is copied to a virtual
register which is then used in a PHI node. If the same virtual register is
copied to the same physical register, the result is an endless loop.
%0:sgpr_64 = COPY $sgpr0_sgpr1
%2 = PHI %0, %bb.0, %1, %bb.1
$sgpr0_sgpr1 = COPY %0
Reviewers: alex-t, rampitec, arsenm
Reviewed By: rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68970
llvm-svn: 374944
|
|
|
|
|
|
|
|
|
|
|
| |
RedirectingFS"
This reverts the original commit and the follow up:
Revert "[VirtualFileSystem] Support virtual working directory in the RedirectingFS"
Revert "[test] Update YAML mapping in VirtualFileSystemTest"
llvm-svn: 374935
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D68806
llvm-svn: 374934
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Renames `ExprType` to the more apt `BlockType` and adds a variant for
multivalue blocks. Currently non-void blocks are only generated at the
end of functions where the block return type needs to agree with the
function return type, and that remains true for multivalue
blocks. That invariant means that the actual signature does not need
to be stored in the block signature `MachineOperand` because it can be
inferred by `WebAssemblyMCInstLower` from the return type of the
parent function. `WebAssemblyMCInstLower` continues to lower block
signature operands to immediates when possible but lowers multivalue
signatures to function type symbols. The AsmParser and Disassembler
are updated to handle multivalue block types as well.
Reviewers: aheejin, dschuff, aardappel
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68889
llvm-svn: 374933
|
|
|
|
|
|
|
|
|
|
| |
from the resolveTargetShuffleAndZeroables call.
Exposes an issue in getFauxShuffleMask where the OR(SHUFFLE,SHUFFLE) decode should always resolve zero/undef elements.
Part of the fix for PR43024 where ideally we shouldn't call resolveTargetShuffleAndZeroables for Depth == 0
llvm-svn: 374928
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is remaining part of rG41ca91f2995b: [AIX][XCOFF] Output XCOFF
object text section header and symbol entry for rogram code.
SUMMARY:
Original form of this patch is provided by Stefan Pintillie.
1. The patch try to output program code section header , symbol entry for
program code (PR) and Instruction into the raw text section.
2. The patch include how to alignment and layout the CSection in the text
section.
3. The patch also reorganize the code , put some codes into a function.
(XCOFFObjectWriter::writeSymbolTableEntryForControlSection)
Additional: We can not add raw data of text section test in the patch, If want
to output raw text section data,it need a function description patch first.
Reviewers: hubert.reinterpretcast, sfertile, jasonliu, xingxue.
Subscribers: wuzish, nemanjai, hiraditya, MaskRay, jsjji.
Differential Revision: https://reviews.llvm.org/D66969
llvm-svn: 374923
|
|
|
|
| |
llvm-svn: 374922
|
|
|
|
|
|
|
|
|
|
| |
Check that a call has an attached MemoryAccess before calling
getClobbering on the instruction.
If no access is attached, the instruction does not access memory.
Resolves PR43441.
llvm-svn: 374920
|
|
|
|
|
|
| |
Update on the fix in rL374850.
llvm-svn: 374918
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, changing the working directory of the RedirectingFS
would just forward to its external file system. This prevented us from
having a working directory that only existed in the VFS mapping.
This patch adds support for a virtual working directory in the
RedirectingFileSystem. It now keeps track of its own WD in addition to
updating the WD of the external file system. This ensures that we can
still fall through for relative paths.
This change was originally motivated by the reproducer infrastructure in
LLDB where we want to deal transparently with relative paths.
Differential revision: https://reviews.llvm.org/D65677
llvm-svn: 374917
|
|
|
|
|
|
|
|
|
|
| |
We define mov/update dpp intrinsics as overloaded but do not
support i64, which is a practically useful type. Fix the
selection and lowering.
Differential Revision: https://reviews.llvm.org/D68673
llvm-svn: 374910
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D68828
llvm-svn: 374908
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Examples:
i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
This is a small generalization of a fold requested in PR43650:
https://bugs.llvm.org/show_bug.cgi?id=43650
The sign-bit of the condition operand can be used as a mask for the true operand:
https://rise4fun.com/Alive/paT
Note that we already handle some of the patterns (isNegative + scalar) because
there's an over-specialized, yet over-reaching fold for that in foldSelectCCToShiftAnd().
It doesn't use any TLI hooks, so I can't easily rip out that code even though we're
duplicating part of it here. This fold is guarded by TLI.convertSelectOfConstantsToMath(),
so it should not cause problems for targets that prefer select over shift.
Also worth noting: I thought we could generalize this further to include the case where
the true operand of the select is not constant, but Alive says that may allow poison to
pass through where it does not in the original select form of the code.
Differential Revision: https://reviews.llvm.org/D68949
llvm-svn: 374902
|
|
|
|
| |
llvm-svn: 374898
|
|
|
|
| |
llvm-svn: 374897
|
|
|
|
| |
llvm-svn: 374894
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68398
llvm-svn: 374889
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reverse the logic for valid tail predication instructions and create
a whitelist instead. Added other instruction groups that aren't
obviously safe:
- instructions that 'narrow' their result.
- lane moves.
- byte swapping instructions.
- interleaving loads and stores.
- cross-beat carries.
- top/bottom instructions.
- complex operations.
Hopefully we should be able to add more of these instructions to the
whitelist, once we have a more concrete idea of the transform.
Differential Revision: https://reviews.llvm.org/D67904
llvm-svn: 374887
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The 1st attempt at rL374828 inserted the code
at the wrong position (outside of the constant-shift-amount
block). Trying again with an additional test to verify
const-ness.
For a constant shift amount, add the following fold.
shl (zext (i1 X)), ShAmt --> select (X, 1 << ShAmt, 0)
https://rise4fun.com/Alive/IZ9
Fixes PR42257.
Based on original patch by @zvi (Zvi Rackover)
Differential Revision: https://reviews.llvm.org/D63382
llvm-svn: 374886
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, jdoerfert
Reviewed By: courbet
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D68792
llvm-svn: 374884
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Internally in LLVM's metadata we use DW_OP_entry_value operations with
the same semantics as DWARF; that is, its operand specifies the number
of bytes that the entry value covers.
At the time of emitting entry values we don't know the emitted size of
the DWARF expression that the entry value will cover. Currently the size
is hardcoded to 1 in DIExpression, and other values causes the verifier
to fail. As the size is 1, that effectively means that we can only have
valid entry values for registers that can be encoded in one byte, which
are the registers with DWARF numbers 0 to 31 (as they can be encoded as
single-byte DW_OP_reg0..DW_OP_reg31 rather than a multi-byte
DW_OP_regx). It is a bit confusing, but it seems like llvm-dwarfdump
will print an operation "correctly", even if the byte size is less than
that, which may make it seem that we emit correct DWARF for registers
with DWARF numbers > 31. If you instead use readelf for such cases, it
will interpret the number of specified bytes as a DWARF expression. This
seems like a limitation in llvm-dwarfdump.
As suggested in D66746, a way forward would be to add an internal
variant of DW_OP_entry_value, DW_OP_LLVM_entry_value, whose operand
instead specifies the number of operations that the entry value covers,
and we then translate that into the byte size at the time of emission.
In this patch that internal operation is added. This patch keeps the
limitation that a entry value can only be applied to simple register
locations, but it will fix the issue with the size operand being
incorrect for DWARF numbers > 31.
Reviewers: aprantl, vsk, djtodoro, NikolaPrica
Reviewed By: aprantl
Subscribers: jyknight, fedor.sergeev, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67492
llvm-svn: 374881
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, mehdi_amini, jvesely, nhaehnle, hiraditya, steven_wu, dexonsmith, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68944
llvm-svn: 374880
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
DWARF's DW_OP_entry_value operation has two operands; the first is a
ULEB128 operand that specifies the size of the second operand, which is
a DWARF block. This means that we need to be able to pre-calculate and
emit the size of DWARF expressions before emitting them. There is
currently no interface for doing this in DwarfExpression, so this patch
introduces that.
When implementing this I initially thought about running through
DwarfExpression's emission two times; first with a temporary buffer to
emit the expression, in order to being able to calculate the size of
that emitted data. However, DwarfExpression is a quite complex state
machine, so I decided against that, as it seemed like the two runs could
get out of sync, resulting in incorrect size operands. Therefore I have
implemented this in a way that we only have to run DwarfExpression once.
The idea is to emit DWARF to a temporary buffer, for which it is
possible to query the size. The data in the temporary buffer can then be
emitted to DwarfExpression's main output.
In the case of DIEDwarfExpression, a temporary DIE is used. The values
are all allocated using the same BumpPtrAllocator as for all other DIEs,
and the values are then transferred to the real value list. In the case
of DebugLocDwarfExpression, the temporary buffer is implemented using a
BufferByteStreamer which emits to a buffer in the DwarfExpression
object.
Reviewers: aprantl, vsk, NikolaPrica, djtodoro
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67768
llvm-svn: 374879
|
|
|
|
|
|
| |
NFCI.
llvm-svn: 374878
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch kills off a significant user of the "IsIndirect" field of
DBG_VALUE machine insts. Brought up in in PR41675, IsIndirect is
techncally redundant as it can be expressed by the DIExpression of a
DBG_VALUE inst, and it isn't helpful to have two ways of expressing
things.
Rather than setting IsIndirect, have DBG_VALUE creators add an extra deref
to the insts DIExpression. There should now be no appearences of
IsIndirect=True from isel down to LiveDebugVariables / VirtRegRewriter,
which is ensured by an assertion in LDVImpl::handleDebugValue. This means
we also get to delete the IsIndirect handling in LiveDebugVariables. Tests
can be upgraded by for example swapping the following IsIndirect=True
DBG_VALUE:
DBG_VALUE $somereg, 0, !123, !DIExpression(DW_OP_foo)
With one where the indirection is in the DIExpression, by _appending_
a deref:
DBG_VALUE $somereg, $noreg, !123, !DIExpression(DW_OP_foo, DW_OP_deref)
Which both mean the same thing.
Most of the test changes in this patch are updates of that form; also some
changes in how the textual assembly printer handles these insts.
Differential Revision: https://reviews.llvm.org/D68945
llvm-svn: 374877
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add vector MSA register classes to fprb, they are 128 bit wide.
MSA instructions use the same registers for both integer and floating
point operations. Therefore we only need to check for vector element
size during legalization or instruction selection.
Add helper function in MipsLegalizerInfo and switch to legalIf
LegalizeRuleSet to keep legalization rules compact since they depend
on MipsSubtarget and presence of MSA.
fprb is assigned to all vector operands.
Move selectLoadStoreOpCode to MipsInstructionSelector in order to
reduce number of arguments.
Differential Revision: https://reviews.llvm.org/D68867
llvm-svn: 374872
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes the 32-element SmallVector to a std::vector. When building
a RelWithDebInfo clang-8 binary, the average size of the vector was
~10000, so it does not seem very beneficial or practical to use a small
vector for that.
The DWARFBytes SmallVector grows in the same way as Comments, so perhaps
that also should be changed to a purely dynamically allocated structure,
but that requires some more code changes, so I let that remain as a
SmallVector for now.
llvm-svn: 374871
|
|
|
|
|
|
|
|
|
|
| |
Check if size of operand LLT matches sizes of available register banks
before inspecting the opcode in order to reduce number of checks.
Factor commonly used pieces of code into functions.
Differential Revision: https://reviews.llvm.org/D68866
llvm-svn: 374870
|