| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
instructions.
I noticed this when working on dialing up how aggressively we can
pre-split loads and stores. My test case wasn't passing because dead
GEPs into the allocas persisted when they were built by this routine.
This isn't terribly harmful, we still rewrote and promoted the alloca
and I can't conceive of how to cause this to happen in a case where we
will keep the exact same alloca but rewrite and promote the uses of it.
If that ever happened, we'd get an assert out of mem2reg.
So I don't have a direct test case yet, but the subsequent commit's test
case wouldn't pass without this. There are other problems fixed by this
patch that I spotted purely by inspection such as the fact that
getAdjustedPtr could have actually deleted dead base pointers. I don't
know how to get a base pointer to go into getAdjustedPtr today, so
I think this bug could never have manifested (and I certainly can't
write a test case for it) but, it wasn't the intent of the code. The
code really just wanted to GC the new instructions built. That can be
done more directly by comparing with the base pointer which is the only
non-new instruction that this code can return.
llvm-svn: 225073
|
| |
|
|
|
|
|
|
| |
array. This prevents it from walking out of bounds on the splits array.
Bug found with the existing tests by ASan and by the MSVC debug build.
llvm-svn: 225069
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a +asserts bootstrap, but my bootstrap had asserts off. Oops.
Anyways, in some places it is reasonable to cast (as a sanity check) the
pointer operand to a load or store to an instruction within SROA --
namely when the pointer operand is expected to be derived from an
alloca, and thus always an instruction. However, the pre-splitting code
also deals with loads and stores to non-alloca pointers and there we
need to just use the Value*. Nothing about the code relied on the
instruction cast, it was only there essentially as an invariant
assertion. Remove the two that don't actually hold.
This should fix the proximate issue in PR22080, but I'm also doing an
asserts bootstrap myself to see if there are other issues lurking.
I'll craft a reduced test case in a moment, but I wanted to get the tree
healthy as quickly as possible.
llvm-svn: 225068
|
| |
|
|
|
|
|
| |
Attempting to fix PR22078 (building on 32-bit systems) by replacing my careless
use of 1ul to be a uint64_t constant with UINT64_C(1).
llvm-svn: 225066
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
of my new load and store splitting, and fix a bug where it logged
a totally irrelevant slice rather than the actual slice in question.
The logging here previously worked because we used to place new slices
onto the back of the core sequence, but that caused other problems.
I updated the actual code to store new slices in their own vector but
didn't update the logging. There isn't a good way to reuse the logging
any more, and frankly it wasn't needed. We can directly log this bit
more easily.
llvm-svn: 225063
|
| |
|
|
|
|
| |
prior to committing r225061. Sorry for that.
llvm-svn: 225062
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
stores.
When there are accesses to an entire alloca with an integer
load or store as well as accesses to small pieces of the alloca, SROA
splits up the large integer accesses. In order to do that, it uses bit
math to merge the small accesses into large integers. While this is
effective, it produces insane IR that can cause significant problems in
the rest of the optimizer:
- It can cause load and store mismatches with GVN on the non-alloca side
where we end up loading an i64 (or some such) rather than loading
specific elements that are stored.
- We can't always get rid of the integer bit math, which is why we can't
always fix the loads and stores to work well with GVN.
- This is especially bad when we have operations that mix poorly with
integer bit math such as floating point operations.
- It will block things like the vectorizer which might be able to handle
the scalar stores that underly the aggregate.
At the same time, we can't just directly split up these loads and stores
in all cases. If there is actual integer arithmetic involved on the
values, then using integer bit math is actually the perfect lowering
because we can often combine it heavily with the surrounding math.
The solution this patch provides is to find places where SROA is
partitioning aggregates into small elements, and look for splittable
loads and stores that it can split all the way to some other adjacent
load and store. These are uniformly the cases where failing to split the
loads and stores hurts the optimizer that I have seen, and I've looked
extensively at the code produced both from more and less aggressive
approaches to this problem.
However, it is quite tricky to actually do this in SROA. We may have
loads and stores to the same alloca, or other complex patterns that are
hard to handle. This complexity leads to the somewhat subtle algorithm
implemented here. We have to do this entire process as a separate pass
over the partitioning of the alloca, and split up all of the loads prior
to splitting the stores so that we can handle safely the cases of
overlapping, including partially overlapping, loads and stores to the
same alloca. We also have to reconstitute the post-split slice
configuration so we can avoid iterating again over all the alloca uses
(the slow part of SROA). But we also have to ensure that when we split
up loads and stores to *other* allocas, we *do* re-iterate over them in
SROA to adapt to the more refined partitioning now required.
With this, I actually think we can fix a long-standing TODO in SROA
where I avoided splitting as many loads and stores as probably should be
splittable. This limitation historically mitigated the fallout of all
the bad things mentioned above. Now that we have more intelligent
handling, I plan to remove the FIXME and more aggressively mark integer
loads and stores as splittable. I'll do that in a follow-up patch to
help with bisecting any fallout.
The net result of this change should be more fine-grained and accurate
scalars being formed out of aggregates. At the very least, Clang now
generates perfect code for this high-level test case using
std::complex<float>:
#include <complex>
void g1(std::complex<float> &x, float a, float b) {
x += std::complex<float>(a, b);
}
void g2(std::complex<float> &x, float a, float b) {
x -= std::complex<float>(a, b);
}
void foo(const std::complex<float> &x, float a, float b,
std::complex<float> &x1, std::complex<float> &x2) {
std::complex<float> l1 = x;
g1(l1, a, b);
std::complex<float> l2 = x;
g2(l2, a, b);
x1 = l1;
x2 = l2;
}
This code isn't just hypothetical either. It was reduced out of the hot
inner loops of essentially every part of the Eigen math library when
using std::complex<float>. Those loops would consistently and
pervasively hop between the floating point unit and the integer unit due
to bit math extraction and insertion of floating point values that were
"stored" in a 64-bit integer register around the loop backedge.
So far, this change has passed a bootstrap and I have done some other
testing and so far, no issues. That doesn't mean there won't be though,
so I'll be prepared to help with any fallout. If you performance swings
in particular, please let me know. I'm very curious what all the impact
of this change will be. Stay tuned for the follow-up to also split more
integer loads and stores.
llvm-svn: 225061
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the second installment of improvements to instruction selection for "bit
permutation" instruction sequences. r224318 added logic for instruction
selection for 32-bit bit permutation sequences, and this adds lowering for
64-bit sequences. The 64-bit sequences are more complicated than the 32-bit
ones because:
a) the 64-bit versions of the 32-bit rotate-and-mask instructions
work by replicating the lower 32-bits of the value-to-be-rotated into the
upper 32 bits -- and integrating this into the cost modeling for the various
bit group operations is non-trivial
b) unlike the 32-bit instructions in 32-bit mode, the rotate-and-mask instructions
cannot, in one instruction, specify the
mask starting index, the mask ending index, and the rotation factor. Also,
forming arbitrary 64-bit constants is more complicated than in 32-bit mode
because the number of instructions necessary is value dependent.
Plus, support for 'late masking' was added: it is sometimes more efficient to
treat the overall value as if it had no mandatory zero bits when planning the
bit-group insertions, and then mask them in at the very end. Unfortunately, as
the structure of the bit groups is different in the two cases, the more
feasible implementation technique was to generate both instruction sequences,
and then pick the shorter one.
And finally, we now generate reasonable code for i64 bswap:
rldicl 5, 3, 16, 0
rldicl 4, 3, 8, 0
rldicl 6, 3, 24, 0
rldimi 4, 5, 8, 48
rldicl 5, 3, 32, 0
rldimi 4, 6, 16, 40
rldicl 6, 3, 48, 0
rldimi 4, 5, 24, 32
rldicl 5, 3, 56, 0
rldimi 4, 6, 40, 16
rldimi 4, 5, 48, 8
rldimi 4, 3, 56, 0
vs. what we used to produce:
li 4, 255
rldicl 5, 3, 24, 40
rldicl 6, 3, 40, 24
rldicl 7, 3, 56, 8
sldi 8, 3, 8
sldi 10, 3, 24
sldi 12, 3, 40
rldicl 0, 3, 8, 56
sldi 9, 4, 32
sldi 11, 4, 40
sldi 4, 4, 48
andi. 5, 5, 65280
andis. 6, 6, 255
andis. 7, 7, 65280
sldi 3, 3, 56
and 8, 8, 9
and 4, 12, 4
and 9, 10, 11
or 6, 7, 6
or 5, 5, 0
or 3, 3, 4
or 7, 9, 8
or 4, 6, 5
or 3, 3, 7
or 3, 3, 4
which is 12 instructions, instead of 25, and seems optimal (at least in terms
of code size).
llvm-svn: 225056
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Some day the backend may handle instruction-level fast math flags and make
this transform unnecessary, but it's still better practice to use the canonical
representation of fneg when possible (use a -0.0).
This is a partial fix for PR20870 ( http://llvm.org/bugs/show_bug.cgi?id=20870 ).
See also http://reviews.llvm.org/D6723.
Differential Revision: http://reviews.llvm.org/D6731
llvm-svn: 225050
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The issues was that AArch64 has additional restrictions on when local
relocations can be used. We have to take those into consideration when
deciding to put a L symbol in the symbol table or not.
Original message:
Remove doesSectionRequireSymbols.
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 225048
|
| |
|
|
| |
llvm-svn: 225047
|
| |
|
|
|
|
| |
problem
llvm-svn: 225045
|
| |
|
|
|
|
|
|
| |
This reverts commit r224985.
I am investigating why it made an Apple bot unhappy.
llvm-svn: 225044
|
| |
|
|
|
|
| |
Relocations aren't implemented yet but we don't need to abort for this in release builds.
llvm-svn: 225043
|
| |
|
|
|
|
| |
modes with all 4 combinations of OpSize and AdSize prefixes being present or not.
llvm-svn: 225036
|
| |
|
|
| |
llvm-svn: 225035
|
| |
|
|
|
|
|
| |
We are allowed to move the 'B' to the right hand side if we an prove
there is no signed overflow and if the comparison itself is signed.
llvm-svn: 225034
|
| |
|
|
|
|
|
| |
This reverts commit r224611. This change causes crashes
in X86 DAG->DAG Instruction Selection.
llvm-svn: 225031
|
| |
|
|
|
|
| |
doubleword bitfield extract, word parity, accumulating multiplies with saturation.
llvm-svn: 225024
|
| |
|
|
| |
llvm-svn: 225018
|
| |
|
|
| |
llvm-svn: 225015
|
| |
|
|
|
|
|
| |
This fixes the DSO build for now. Eventually we should develop some
other mechanism to make this work correctly with DSOs.
llvm-svn: 225014
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GCC does this for non-zero discriminators and since GCC doesn't produce
column info, that was the only place it comes up there. For LLVM, since
we can emit discriminators and/or column info, it makes more sense to
invert the condition and just test for changes in line number.
This should resolve at least some of the GDB 7.5 test suite failures
created by recent Clang changes that increase the location fidelity
(which, since Clang defaults to including column info on Linux by
default created a bunch of cases that confused GDB).
In theory we could do this better/differently by grouping actual source
statements together in a similar manner to the way lexical scopes are
handled but given that GDB isn't really in a position to consume that (&
users are probably somewhat used to different lines being different
'statements') this seems the safest and cheapest change. (I'm concerned
that doing this 'right' would bloat the debugloc data even further -
something Duncan's working hard to address)
llvm-svn: 225011
|
| |
|
|
| |
llvm-svn: 225010
|
| |
|
|
|
|
| |
immediate newvalue stores.
llvm-svn: 225009
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D6796
llvm-svn: 225008
|
| |
|
|
| |
llvm-svn: 225007
|
| |
|
|
| |
llvm-svn: 225006
|
| |
|
|
| |
llvm-svn: 225005
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Under the large code model, we cannot assume that __morestack lives within
2^31 bytes of the call site, so we cannot use pc-relative addressing. We
cannot perform the call via a temporary register, as the rax register may
be used to store the static chain, and all other suitable registers may be
either callee-save or used for parameter passing. We cannot use the stack
at this point either because __morestack manipulates the stack directly.
To avoid these issues, perform an indirect call via a read-only memory
location containing the address.
This solution is not perfect, as it assumes that the .rodata section
is laid out within 2^31 bytes of each function body, but this seems to
be sufficient for JIT.
Differential Revision: http://reviews.llvm.org/D6787
llvm-svn: 225003
|
| |
|
|
| |
llvm-svn: 224999
|
| |
|
|
|
|
|
|
|
|
| |
If a linker directive is already quoted, don't try to quote it again, otherwise it creates a mess.
This pops up in places like:
#pragma comment(linker,"\"/foo bar'\"")
Differential Revision: http://reviews.llvm.org/D6792
llvm-svn: 224998
|
| |
|
|
| |
llvm-svn: 224997
|
| |
|
|
| |
llvm-svn: 224994
|
| |
|
|
|
|
|
|
|
| |
This function's implementation lives in libgcc, a static library, so we need
to expose it explicitly, like the other such functions.
Differential Revision: http://reviews.llvm.org/D6788
llvm-svn: 224993
|
| |
|
|
| |
llvm-svn: 224992
|
| |
|
|
|
|
| |
compare to general register reg-imm form.
llvm-svn: 224991
|
| |
|
|
|
|
| |
compare to general register, and inverted compares.
llvm-svn: 224989
|
| |
|
|
|
|
| |
No functional changes.
llvm-svn: 224986
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 224985
|
| |
|
|
|
|
|
|
|
|
| |
Nothing particularly interesting, just adding infrastructure for use by in tree users and out of tree users.
Note: These were extracted out of a working frontend, but they have not been well tested in isolation.
Differential Revision: http://reviews.llvm.org/D6807
llvm-svn: 224981
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change implements four basic optimizations:
If a relocated value isn't used, it doesn't need to be relocated.
If the value being relocated is null, relocation doesn't change that. (Technically, this might be collector specific. I don't know of one which it doesn't work for though.)
If the value being relocated is undef, the relocation is meaningless.
If the value being relocated was known nonnull, the relocated pointer also isn't null. (Since it points to the same source language object.)
I outlined other planned work in comments.
Differential Revision: http://reviews.llvm.org/D6600
llvm-svn: 224968
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In LICM, we have a check for an instruction which is guaranteed to execute and thus can't introduce any new faults if moved to the preheader. To handle a function which might unconditionally throw when first called, we check for any potentially throwing call in the loop and give up.
This is unfortunate when the potentially throwing condition is down a rare path. It prevents essentially all LICM of potentially faulting instructions where the faulting condition is checked outside the loop. It also greatly diminishes the utility of loop unswitching since control dependent instructions - which are now likely in the loops header block - will not be lifted by subsequent LICM runs.
define void @nothrow_header(i64 %x, i64 %y, i1 %cond) {
; CHECK-LABEL: nothrow_header
; CHECK-LABEL: entry
; CHECK: %div = udiv i64 %x, %y
; CHECK-LABEL: loop
; CHECK: call void @use(i64 %div)
entry:
br label %loop
loop: ; preds = %entry, %for.inc
%div = udiv i64 %x, %y
br i1 %cond, label %loop-if, label %exit
loop-if:
call void @use(i64 %div)
br label %loop
exit:
ret void
}
The current patch really only helps with non-memory instructions (i.e. divs, etc..) since the maythrow call down the rare path will be considered to alias an otherwise hoistable load. The one exception is that it does kick in for loads which are known to be invariant without regard to other possible stores, i.e. those marked with either !invarant.load metadata of tbaa 'is constant memory' metadata.
Differential Revision: http://reviews.llvm.org/D6725
llvm-svn: 224965
|
| |
|
|
|
|
|
|
|
|
| |
This patches fixes a miscompile where we were assuming that loading from null is undefined and thus we could assume it doesn't happen. This transform is perfectly legal in address space 0, but is not neccessarily legal in other address spaces.
We really should introduce a hook to control this property on a per target per address space basis. We may be loosing valuable optimizations in some address spaces by being too conservative.
Original patch by Thomas P Raoux (submitted to llvm-commits), tests and formatting fixes by me.
llvm-svn: 224961
|
| |
|
|
|
|
| |
post-increment circular register stores, and bit reversed post-increment stores.
llvm-svn: 224957
|
| |
|
|
| |
llvm-svn: 224955
|
| |
|
|
| |
llvm-svn: 224953
|
| |
|
|
|
|
| |
form stores with tests.
llvm-svn: 224952
|
| |
|
|
|
|
| |
have encoding bits.
llvm-svn: 224951
|
| |
|
|
|
|
| |
classes and instruction defs.
llvm-svn: 224949
|