| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
| |
This patch brings back the MOV64r0 pseudo instruction for zeroing a 64-bit register. This replaces the SUBREG_TO_REG MOV32r0 sequence we use today. Post register allocation we will rewrite the MOV64r0 to a 32-bit xor with an implicit def of the 64-bit register similar to what we do for the various XMM/YMM/ZMM zeroing pseudos.
My main motivation is to enable the spill optimization in foldMemoryOperandImpl. As we were seeing some code that repeatedly did "xor eax, eax; store eax;" to spill several registers with a new xor for each store. With this optimization enabled we get a store of a 0 immediate instead of an xor. Though I admit the ideal solution would be one xor where there are multiple spills. I don't believe we have a test case that shows this optimization in here. I'll see if I can try to reduce one from the code were looking at.
There's definitely some other machine CSE(and maybe other passes) behavior changes exposed by this patch. So it seems like there might be some other deficiencies in SUBREG_TO_REG handling.
Differential Revision: https://reviews.llvm.org/D52757
llvm-svn: 345165
|
| |
|
|
|
|
| |
Non-uniform division/remainder handling was added back at D49248/D50765 - so share the 'mul+sub' costs that already exist for uniform cases.
llvm-svn: 345164
|
| |
|
|
|
|
|
|
|
| |
A lifetime end intrinsic between a tail call and the return should not
prevent the call from being tail call optimized.
Differential Revision: https://reviews.llvm.org/D53519
llvm-svn: 345163
|
| |
|
|
|
|
|
|
| |
Use SrcVT/DestVT types and correct shift type.
Part of prep work for D52965
llvm-svn: 345158
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This function was performing two hash lookups when a new function type was requested: first checking if it exists and second to insert it. This patch updates the function to perform a single hash lookup in this case by updating the value in the hash table in-place in case the function type was not there before.
Reviewers: bkramer
Reviewed By: bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53471
llvm-svn: 345151
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The original patch was committed here:
rL344609
...and reverted:
rL344612
...because it did not properly check/test data types before calling
ComputeNumSignBits().
The tests that caused bot failures for the previous commit are
over-reaching front-end tests that run the entire -O optimizer
pipeline:
Clang :: CodeGen/builtins-systemz-zvector.c
Clang :: CodeGen/builtins-systemz-zvector2.c
I've added a negative test here to ensure coverage for that case.
The new early exit check also tests the type of the 'B' parameter,
so we don't waste time on matching if either value is unsuitable.
Original commit message:
This is part of solving PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549
The patterns shown here are a special case of something
that we already convert to select. Using ComputeNumSignBits()
catches that case (but not the more complicated motivating
patterns yet).
The backend has hooks/logic to convert back to logic ops
if that's better for the target.
llvm-svn: 345149
|
| |
|
|
|
|
|
|
| |
This work is to avoid regressions when we seperate FNeg from the FSub IR instruction.
Differential Revision: https://reviews.llvm.org/D53205
llvm-svn: 345146
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If the target does not support `.asciz` and `.ascii` directives, the
strings are represented as bytes and each byte is placed on the new line
as a separate byte directive `.b8 <data>`. NVPTX target allows to
represent the vector of the data of the same type as a vector, where
values are separated using `,` symbol: `.b8 <data1>,<data2>,...`. This
allows to reduce the size of the final PTX file. Ptxas tool includes ptx
files into the resulting binary object, so reducing the size of the PTX
file is important.
Reviewers: tra, jlebar, echristo
Subscribers: jholewinski, llvm-commits
Differential Revision: https://reviews.llvm.org/D45822
llvm-svn: 345142
|
| |
|
|
|
|
| |
Change destination module type for consistency with r345118
llvm-svn: 345124
|
| |
|
|
|
|
| |
Investigating fails.
llvm-svn: 345123
|
| |
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D53418
Change-Id: Ie3d054f2e956c2768988c0f4c0ffd29a47294eef
llvm-svn: 345120
|
| |
|
|
|
|
|
|
|
|
| |
Regular LTO module identifier is (unsigned)-1. This patch emits correct
module identifier while printing edges with source summary in regular
LTO module.
Differential revision: https://reviews.llvm.org/D53583
llvm-svn: 345118
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
masked-interleaving is enabled
Enable interleave-groups under fold-tail scenario for Opt for size compilation;
D50480 added support for vectorizing loops of arbitrary trip-count without a
remiander, which in turn makes everything in the loop conditional, including
interleave-groups if any. It therefore invalidated all interleave-groups
because we didn't have support for vectorizing predicated interleaved-groups
at the time. In the meantime, D53011 introduced this support, so we don't
have to invalidate interleave-groups when masked-interleaved support is enabled.
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: hsaito
Differential Revision: https://reviews.llvm.org/D53559
llvm-svn: 345115
|
| |
|
|
|
|
|
|
|
|
|
|
| |
LSR reassociates constants as unfolded offsets when the constants fit as
immediate add operands, which currently prevents such constants from being
combined later with loop invariant registers.
This patch modifies GenerateCombinations() to generate a second formula which
includes the unfolded offset in the combined loop-invariant register.
Differential Revision: https://reviews.llvm.org/D51861
llvm-svn: 345114
|
| |
|
|
|
|
| |
This B/W VPTEST instructions are only available with AVX512BW. But lowering should prevent any byte or word elements from getting to isel so this can't be exposed.
llvm-svn: 345112
|
| |
|
|
|
|
|
|
|
|
|
|
| |
A global alias may use indices which are not considered in bounds. In
such a case, accessing the base object will fail as it only peers
through inbounds accesses. This pattern is used by the swift compiler
to create references to preceeding members in the type metadata. This
would cause the code generation to fail when targeting a platform that
used ELF as the object file format. Be conservative and fail the
read-only check if we run into an alias that we cannot peer through.
llvm-svn: 345107
|
| |
|
|
| |
llvm-svn: 345105
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On GNU/Hurd, llvm-config is returning bogus value, such as:
$ llvm-config-6.0 --includedir
/usr/include
while it should be:
$ llvm-config-6.0 --includedir
/usr/lib/llvm-6.0/include
This is because getMainExecutable does not get the actual installation
path. On GNU/Hurd, /proc/self/exe is indeed a symlink to the path that
was used to start the program, and not the eventual binary file. Llvm's
getMainExecutable thus needs to run realpath over it to get the actual
place where llvm was installed (/usr/lib/llvm-6.0/bin/llvm-config), and
not /usr/bin/llvm-config-6.0. This will not change the result on Linux,
where /proc/self/exe already points to the eventual file.
Patch by Samuel Thibault!
While making changes here, I reformatted this block a bit to reduce
indentation and match 2 space indent style.
Differential Revision: https://reviews.llvm.org/D53557
llvm-svn: 345104
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
in the same round of SCC update.
In https://reviews.llvm.org/rL309784, inline history is added to prevent
infinite inlining across multiple run of inliner and SCC update, but the
history will only be kept when new SCC is actually generated during SCC update.
We found a case that SCC can be split and then merge into itself in the same
round of SCC update, so the same SCC will be pop out from UR.CWorklist and
then added back immediately, without any new SCC generated, that is why the
existing patch cannot catch the infinite inline case.
What the patch does is even if no new SCC is generated, if only the current
SCC appears in UR.CWorklist again, then keep the inline history.
Differential Revision: https://reviews.llvm.org/D52915
llvm-svn: 345103
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When implementing memset's today we often see this pattern:
$x0 = MOV 0xXYXYXYXYXYXYXYXY
store $x0, ...
$w1 = MOV 0xXYXYXYXY
store $w1, ...
We first create a 64bit constant in a 64bit register with all bytes the
same and then create a 32bit constant with all bytes the same in a 32bit
register. In many targets we could just access the lower byte of the
64bit register instead.
- Ideally this would be handled by the ConstantHoist pass but it runs
too early when memset isn't expanded yet.
- The memset expansion code already had this optimization implemented,
however SelectionDAG constantfolding would constantfold the
"trunc(bigconstnat)" pattern to "smallconstant".
- This patch makes the memset expansion mark the constant as Opaque and
stop DAGCombiner from constant folding in this situation. (Similar to
how ConstantHoisting marks things as Opaque to avoid folding
ADD/SUB/etc.)
Differential Revision: https://reviews.llvm.org/D53181
llvm-svn: 345102
|
| |
|
|
| |
llvm-svn: 345098
|
| |
|
|
|
|
| |
This reverts commit r345095. It was accidentally committed.
llvm-svn: 345097
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Fix the new PM to only perform hot cold splitting once during ThinLTO,
by skipping it in the pre-link phase.
This was already fixed in the old PM by the move of the hot cold split
pass later (after the early return when PrepareForThinLTO) by r344869.
Reviewers: vsk, sebpop, hiraditya
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D53611
llvm-svn: 345096
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is a revised version of D41474.
When the debug location is parsed in BitcodeReader::parseFunction, the
scope and inlinedAt MDNodes are obtained via MDLoader->getMDNodeFwdRefOrNull(),
which will create a forward ref if they were not yet loaded.
Specifically, if one of these MDNodes is in the module level metadata
block, and this is during ThinLTO importing, that metadata block is
lazily loaded.
Most places in that invoke getMDNodeFwdRefOrNull have a corresponding call
to resolveForwardRefsAndPlaceholders which will take care of resolving them.
E.g. places that call getMetadataFwdRefOrLoad, or at the end of parsing a
function-level metadata block, or at the end of the initial lazy load of
module level metadata in order to handle invocations of getMDNodeFwdRefOrNull
for named metadata and global object attachments. However, the calls for
the scope/inlinedAt of debug locations are not backed by any such call to
resolveForwardRefsAndPlaceholders.
To fix this, change the scope and inlinedAt parsing to instead use
getMetadataFwdRefOrLoad, which will ensure the forward refs to lazily
loaded metadata are resolved.
Fixes PR35472.
Reviewers: dexonsmith, Sunil_Srivastava, vsk
Subscribers: inglorion, eraman, steven_wu, sebpop, mehdi_amini, dmikulin, vsk, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D53596
llvm-svn: 345095
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch will print out {Counter, Skip, StopAfter} info of all passes which have DebugCounter set at destruction.
It can be used to monitor how many times does certain transformation happen in a pass, and also help check if -debug-counter option is set correctly.
Please refer to this [[ http://lists.llvm.org/pipermail/llvm-dev/2018-July/124722.html | thread ]] for motivation.
Reviewers: george.burgess.iv, davide, greened
Reviewed By: greened
Subscribers: kristina, llozano, mgorny, llvm-commits, mgrang
Differential Revision: https://reviews.llvm.org/D50031
llvm-svn: 345085
|
| |
|
|
| |
llvm-svn: 345083
|
| |
|
|
|
|
|
|
|
|
|
|
| |
beginning.
Clearing LargeOffsetGEPMap at the end fixes a bug where if a large
offset GEP is in a dead basic block, we fail an assertion when trying
to delete the block due to the asserting VH in LargeOffsetGEPMap.
Differential Revision: https://reviews.llvm.org/D53464
llvm-svn: 345082
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
lookup."
Doesn't build on Windows. The call to 'lookup' is ambiguous. Clang and
MSVC agree, anyway.
http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/787
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\unittests\ExecutionEngine\Orc\CoreAPIsTest.cpp(315): error C2668: 'llvm::orc::ExecutionSession::lookup': ambiguous call to overloaded function
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\include\llvm/ExecutionEngine/Orc/Core.h(823): note: could be 'llvm::Expected<llvm::JITEvaluatedSymbol> llvm::orc::ExecutionSession::lookup(llvm::ArrayRef<llvm::orc::JITDylib *>,llvm::orc::SymbolStringPtr)'
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\include\llvm/ExecutionEngine/Orc/Core.h(817): note: or 'llvm::Expected<llvm::JITEvaluatedSymbol> llvm::orc::ExecutionSession::lookup(const llvm::orc::JITDylibSearchList &,llvm::orc::SymbolStringPtr)'
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\unittests\ExecutionEngine\Orc\CoreAPIsTest.cpp(315): note: while trying to match the argument list '(initializer list, llvm::orc::SymbolStringPtr)'
llvm-svn: 345078
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the new scheme the client passes a list of (JITDylib&, bool) pairs, rather
than a list of JITDylibs. For each JITDylib the boolean indicates whether or not
to match against non-exported symbols (true means that they should be found,
false means that they should not). The MatchNonExportedInJD and MatchNonExported
parameters on lookup are removed.
The new scheme is more flexible, and easier to understand.
This patch also updates JITDylib search orders to be lists of (JITDylib&, bool)
pairs to match the new lookup scheme. Error handling is also plumbed through
the LLJIT class to allow regression tests to fail predictably when a lookup from
a lazy call-through fails.
llvm-svn: 345077
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Outlined code is cold by assumption, so it makes sense to optimize it
for minimal code size rather than performance.
After r344869 moved the splitting pass to the end of the IR pipeline,
this does not result in much of a code size reduction. This is probably
because a comparatively small number backend transforms make use of the
MinSize hint.
Running LNT on x86_64, I see that 33/1020 binaries shrink for a total of
919 bytes of TEXT reduction. I didn't measure a significant performance
impact.
Differential Revision: https://reviews.llvm.org/D53518
llvm-svn: 345072
|
| |
|
|
|
|
| |
We can't add the MULDQ node back to the worklist after the demanded bits change has been committed in case the node has been removed entirely. This will have to wait until we have SimplifyDemandedBitsForTargetNode.
llvm-svn: 345070
|
| |
|
|
|
|
|
|
| |
As suggested on D53258, this patch move the CTPOP expansion code from SelectionDAGLegalize to TargetLowering to allow it to be reused by the VectorLegalizer.
Proper vector support will be added by D53258.
llvm-svn: 345066
|
| |
|
|
|
|
|
| |
As reported by ctopper.
That is a gcc-only warning at the moment.
llvm-svn: 345065
|
| |
|
|
|
|
|
|
| |
As suggested on D53258, this patch shares common CTLZ expansion code between VectorLegalizer and SelectionDAGLegalize by putting it in TargetLowering.
Extension to D53474
llvm-svn: 345060
|
| |
|
|
| |
llvm-svn: 345057
|
| |
|
|
| |
llvm-svn: 345054
|
| |
|
|
|
|
|
|
|
| |
Add support to allow bit-casting from f128 to i128 and then
extracting 64 bits from the result.
Differential Revision: https://reviews.llvm.org/D49507
llvm-svn: 345053
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The initial motivation is that we want to remove the
fneg API because that would silently fail if we add
an actual fneg instruction to IR. The same would be
true for the integer ops, so we might as well get rid
of these too.
We have a newer 'match' API that makes checking for
these patterns simpler. It also works with vectors
that may include undef elements in constants.
If any out-of-tree users need updating, they can model
their code changes on these commits:
rL345050
rL345043
rL345042
rL345041
rL345036
rL345030
llvm-svn: 345052
|
| |
|
|
|
|
|
|
|
|
|
|
| |
There's probably some vector-with-undef-element pattern
that shows an improvement, so this is probably not quite
'NFC'.
This is the last step towards removing the fake binop
queries for not/neg. Ie, there are no more uses of those
functions in trunk. Fneg should follow.
llvm-svn: 345050
|
| |
|
|
|
|
| |
difference in lowering.
llvm-svn: 345048
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
booleans.
Summary:
TryToShrinkGlobalToBoolean, when possible, will split store <value> + load <value> into store <bool> + select <bool ? value : 0>. This preserves DebugLoc during that pass.
Fixes PR37959. The test case here is the simplified .ll for:
```
static int foo;
int bar() {
foo = 5;
return foo;
}
```
Reviewers: dblaikie, gbedwell, aprantl
Reviewed By: dblaikie
Subscribers: mehdi_amini, JDevlieghere, dexonsmith, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D53531
llvm-svn: 345046
|
| |
|
|
|
|
|
|
| |
Vector types are not possible here because this code explicitly
checks for a scalar type, but this is another step towards
completely removing the fake binop queries for not/neg/fneg.
llvm-svn: 345043
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We need to update this code before introducing an 'fneg' instruction in IR,
so we might as well kill off the integer neg/not queries too.
This is no-functional-change-intended for scalar code and most vector code.
For vectors, we can see that the 'match' API allows for undef elements in
constants, so we optimize those cases better.
Ideally, there would be a test for each code diff, but I don't see evidence
of that for the existing code, so I didn't try very hard to come up with new
vector tests for each code change.
Differential Revision: https://reviews.llvm.org/D53533
llvm-svn: 345042
|
| |
|
|
|
|
|
|
|
| |
Vector types are not possible here because this code only starts
matching from the scalar bool value of a conditional branch, but
this is another step towards completely removing the fake binop
queries for not/neg/fneg.
llvm-svn: 345041
|
| |
|
|
| |
llvm-svn: 345040
|
| |
|
|
|
|
|
|
|
|
| |
As suggested on D53258, this patch demonstrates sharing common CTTZ expansion code between VectorLegalizer and SelectionDAGLegalize by putting it in TargetLowering.
I intend to move CTLZ and (scalar) CTPOP over as well and then update D53258 accordingly.
Differential Revision: https://reviews.llvm.org/D53474
llvm-svn: 345039
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Expand arithmetic reduction to include mul/and/or/xor instructions.
This patch just fixes the SLPVectorizer - the effective reduction costs for AVX1+ are still poor (see rL344846) and will need to be improved before SLP sees this as a valid transform - but we can already see the effect on SSE2 tests.
This partially helps PR37731, but doesn't fix it all as it still falls over on the extraction/reduction order for some reason.
Differential Revision: https://reviews.llvm.org/D53473
llvm-svn: 345037
|
| |
|
|
|
|
|
| |
This is another step towards completely removing the fake
binop queries for not/neg/fneg.
llvm-svn: 345036
|
| |
|
|
| |
llvm-svn: 345034
|
| |
|
|
|
|
|
|
|
| |
files"
This reverts commit 40760b733d9eef841c897338af5e9d81b12551bf.
It seems that the commit is a cuse of the build failure.
llvm-svn: 345032
|