| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for AArch64 to cfi-verify.
This required three changes to cfi-verify. First, it generalizes checking if an instruction is a trap by adding a new isTrap flag to TableGen (and defining it for x86 and AArch64). Second, the code that ensures that the operand register is not clobbered between the CFI check and the indirect call needs to allow a single dereference (in x86 this happens as part of the jump instruction). Third, we needed to ensure that return instructions are not counted as indirect branches. Technically, returns are indirect branches and can be covered by CFI, but LLVM's forward-edge CFI does not protect them, and x86 does not consider them, so we keep that behavior.
In addition, we had to improve AArch64's code to evaluate the branch target of a MCInst to handle calls where the destination is not the first operand (which it often is not).
Differential Revision: https://reviews.llvm.org/D48836
llvm-svn: 337007
|
|
|
|
| |
llvm-svn: 337002
|
|
|
|
| |
llvm-svn: 337001
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A TableGen instruction record usually contains a DAG pattern that will
describe the SelectionDAG operation that can be implemented by this
instruction. However, there will be cases where several different DAG
patterns can all be implemented by the same instruction. The way to
represent this today is to write additional patterns in the Pattern
(or usually Pat) class that map those extra DAG patterns to the
instruction. This usually also works fine.
However, I've noticed cases where the current setup seems to require
quite a bit of extra (and duplicated) text in the target .td files.
For example, in the SystemZ back-end, there are quite a number of
instructions that can implement an "add-with-overflow" operation.
The same instructions also need to be used to implement just plain
addition (simply ignoring the extra overflow output). The current
solution requires creating extra Pat pattern for every instruction,
duplicating the information about which particular add operands
map best to which particular instruction.
This patch enhances TableGen to support a new PatFrags class, which
can be used to encapsulate multiple alternative patterns that may
all match to the same instruction. It operates the same way as the
existing PatFrag class, except that it accepts a list of DAG patterns
to match instead of just a single one. As an example, we can now define
a PatFrags to match either an "add-with-overflow" or a regular add
operation:
def z_sadd : PatFrags<(ops node:$src1, node:$src2),
[(z_saddo node:$src1, node:$src2),
(add node:$src1, node:$src2)]>;
and then use this in the add instruction pattern:
defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
These SystemZ target changes are implemented here as well.
Note that PatFrag is now defined as a subclass of PatFrags, which
means that some users of internals of PatFrag need to be updated.
(E.g. instead of using PatFrag.Fragment you now need to use
!head(PatFrag.Fragments).)
The implementation is based on the following main ideas:
- InlinePatternFragments may now replace each original pattern
with several result patterns, not just one.
- parseInstructionPattern delays calling InlinePatternFragments
and InferAllTypes. Instead, it extracts a single DAG match
pattern from the main instruction pattern.
- Processing of the DAG match pattern part of the main instruction
pattern now shares most code with processing match patterns from
the Pattern class.
- Direct use of main instruction patterns in InferFromPattern and
EmitResultInstructionAsOperand is removed; everything now operates
solely on DAG match patterns.
Reviewed by: hfinkel
Differential Revision: https://reviews.llvm.org/D48545
llvm-svn: 336999
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This commit does two things:
1. modified the existing DivergenceAnalysis::dump() so it dumps the
whole function with added DIVERGENT: annotations;
2. added code to do that dump if the appropriate -debug-only option is
on.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47700
Change-Id: Id97b605aab1fc6f5a11a20c58a99bbe8c565bf83
llvm-svn: 336998
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Spectre variant #1 for x86.
There is a lengthy, detailed RFC thread on llvm-dev which discusses the
high level issues. High level discussion is probably best there.
I've split the design document out of this patch and will land it
separately once I update it to reflect the latest edits and updates to
the Google doc used in the RFC thread.
This patch is really just an initial step. It isn't quite ready for
prime time and is only exposed via debugging flags. It has two major
limitations currently:
1) It only supports x86-64, and only certain ABIs. Many assumptions are
currently hard-coded and need to be factored out of the code here.
2) It doesn't include any options for more fine-grained control, either
of which control flow edges are significant or which loads are
important to be hardened.
3) The code is still quite rough and the testing lighter than I'd like.
However, this is enough for people to begin using. I have had numerous
requests from people to be able to experiment with this patch to
understand the trade-offs it presents and how to use it. We would also
like to encourage work to similar effect in other toolchains.
The ARM folks are actively developing a system based on this for
AArch64. We hope to merge this with their efforts when both are far
enough along. But we also don't want to block making this available on
that effort.
Many thanks to the *numerous* people who helped along the way here. For
this patch in particular, both Eric and Craig did a ton of review to
even have confidence in it as an early, rough cut at this functionality.
Differential Revision: https://reviews.llvm.org/D44824
llvm-svn: 336990
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(REAPPLIED-2)
We currently only support binary instructions in the alternate opcode shuffles.
This patch is an initial attempt at adding cast instructions as well, this raises several issues that we probably want to address as we continue to generalize the alternate mechanism:
1 - Duplication of cost determination - we should probably add scalar/vector costs helper functions and get BoUpSLP::getEntryCost to use them instead of determining costs directly.
2 - Support alternate instructions with the same opcode (e.g. casts with different src types) - alternate vectorization of calls with different IntrinsicIDs will require this.
3 - Allow alternates to be a different instruction type - mixing binary/cast/call etc.
4 - Allow passthrough of unsupported alternate instructions - related to PR30787/D28907 'copyable' elements.
Reapplied with fix to only accept 2 different casts if they come from the same source type (PR38154).
Differential Revision: https://reviews.llvm.org/D49135
llvm-svn: 336989
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
flow patterns including forks, merges, and even cyles.
This tries to cover a reasonably comprehensive set of patterns that
still don't require PHIs or PHI placement. The coverage was inspired by
the amazing variety of patterns produced when copy EFLAGS and restoring
it to implement Speculative Load Hardening. Without this patch, we
simply cannot make such complex and invasive changes to x86 instruction
sequences due to EFLAGS.
I've added "just" one test, but this test covers many different
complexities and corner cases of this approach. It is actually more
comprehensive, as far as I can tell, than anything that I have
encountered in the wild on SLH.
Because the test is so complex, I've tried to give somewhat thorough
comments and an ASCII-art diagram of the control flows to make it a bit
easier to read and maintain long-term.
Differential Revision: https://reviews.llvm.org/D49220
llvm-svn: 336985
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for the following unpack instructions:
- PUNPKLO, PUNPKHI Unpack elements from low/high half and
place into elements of twice their size.
e.g. punpklo p0.h, p0.b
- UUNPKLO, UUNPKHI Unpack elements from low/high half and
SUNPKLO, SUNPKHI place into elements of twice their size
after zero- or sign-extending the values.
e.g. uunpklo z0.h, z0.b
llvm-svn: 336982
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Insert general purpose register into shifted vector, e.g.
insr z0.s, w0
insr z0.d, x0
Insert SIMD&FP scalar register into shifted vector, e.g.
insr z0.b, b0
insr z0.h, h0
insr z0.s, s0
insr z0.d, d0
llvm-svn: 336979
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During the execution of long functions or functions that have a lot of
inlined code it could come to the situation where tracked value could be
transferred from one register to another. The transfer is recognized only if
destination register is a callee saved register and if source register is
killed. We do not salvage caller-saved registers since there is a great
chance that killed register would outlive it.
Patch by Nikola Prica.
Differential Revision: https://reviews.llvm.org/D44016
llvm-svn: 336978
|
|
|
|
|
|
| |
Previously we iseled to blend, commuted to another blend, and then commuted back to movss/movsd or blend depending on optsize. Now we do it directly.
llvm-svn: 336976
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
record entry in FDR mode
Summary:
llvm-xray changes:
- account-mode - process-id {...} shows after thread-id
- convert-mode - process {...} shows after thread
- parses FDR and basic mode pid entries
- Checks version number for FDR log parsing.
Basic logging changes:
- Update header version from 2 -> 3
FDR logging changes:
- Update header version from 2 -> 3
- in writeBufferPreamble, there is an additional PID Metadata record (after thread id record and tsc record)
Test cases changes:
- fdr-mode.cc, fdr-single-thread.cc, fdr-thread-order.cc modified to catch process id output in the log.
Reviewers: dberris
Reviewed By: dberris
Subscribers: hiraditya, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D49153
llvm-svn: 336974
|
|
|
|
|
|
|
|
|
|
| |
scalar intrinsic instructions.
This is not an optimization we should be doing in isel. This is more suitable for a DAG combine.
My main concern is a future time when we support more FPENV. Changing a packed op to a scalar op could cause us to miss some exceptions that should have occured if we had done a packed op. A DAG combine would be better able to manage this.
llvm-svn: 336971
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously, when both DT and PDT are nullptrs and the UpdateStrategy is Lazy, DomTreeUpdater still pends updates inside.
After this patch, DomTreeUpdater will ignore all updates from(`applyUpdates()/insertEdge*()/deleteEdge*()`) in this case. (call `delBB()` still pends BasicBlock deletion until a flush event according to the doc).
The behavior of DomTreeUpdater previously documented won't change after the patch.
Reviewers: dmgreen, davide, kuhar, brzycki, grosser
Reviewed By: kuhar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48974
llvm-svn: 336968
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This bug was created by rL335258 because we used to always call instsimplify
after trying the associative folds. After that change it became possible
for subsequent folds to encounter unsimplified code (and potentially assert
because of it).
Instead of carrying changed state through instcombine, we can just return
immediately. This allows instsimplify to run, so we can continue assuming
that easy folds have already occurred.
llvm-svn: 336965
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This re-applies r336929 with a fix to accomodate for the Mips target
scheduling multiple SelectionDAG instances into the pass pipeline.
PrologEpilogInserter and StackColoring depend on the StackProtector analysis
being alive from the point it is run until PEI, which requires that they are all
scheduled in the same FunctionPassManager. Inserting a (machine) ModulePass
between StackProtector and PEI results in these passes being in separate
FunctionPassManagers and the StackProtector is not available for PEI.
PEI and StackColoring don't use much information from the StackProtector pass,
so transfering the required information to MachineFrameInfo is cleaner than
keeping the StackProtector pass around. This commit moves the SSP layout
information to MFI instead of keeping it in the pass.
This patch set (D37580, D37581, D37582, D37583, D37584, D37585, D37586, D37587)
is a first draft of the pagerando implementation described in
http://lists.llvm.org/pipermail/llvm-dev/2017-June/113794.html.
Patch by Stephen Crane <sjc@immunant.com>
Differential Revision: https://reviews.llvm.org/D49256
llvm-svn: 336964
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch is crucial for proving equality laundered/stripped
pointers. eg:
bool foo(A *a) {
return a == std::launder(a);
}
Clang with -fstrict-vtable-pointers will emit something like:
define dso_local zeroext i1 @_Z3fooP1A(%struct.A* %a) {
entry:
%c = bitcast %struct.A* %a to i8*
%call = tail call i8* @llvm.launder.invariant.group.p0i8(i8* %c)
%0 = bitcast %struct.A* %a to i8*
%1 = tail call i8* @llvm.strip.invariant.group.p0i8(i8* %0)
%2 = tail call i8* @llvm.strip.invariant.group.p0i8(i8* %call)
%cmp = icmp eq i8* %1, %2
ret i1 %cmp
}
and because %2 can be replaced with @llvm.strip.invariant.group(%0)
and that %2 and %1 will produce the same value (because strip is readnone)
we can replace compare with true.
Reviewers: rsmith, hfinkel, majnemer, amharc, kuhar
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D47423
llvm-svn: 336963
|
|
|
|
| |
llvm-svn: 336957
|
|
|
|
|
|
| |
These are the patterns for matching fceil, ffloor, and sqrt to intrinsic instructions if they have a MOVSS/SD.
llvm-svn: 336954
|
|
|
|
|
|
|
|
| |
patterns so we get EVEX instructions." and "foo"
One of them had a bad title and they should have been squashed.
llvm-svn: 336953
|
|
|
|
|
|
|
| |
For the first one, we dereference `NewDef` right before the `if` anyway.
For the second, we shouldn't have NULL users().
llvm-svn: 336952
|
|
|
|
|
|
| |
These are the patterns for matching fceil, ffloor, and sqrt to intrinsic instructions if they have a MOVSS/SD.
llvm-svn: 336951
|
|
|
|
| |
llvm-svn: 336950
|
|
|
|
|
|
|
|
|
| |
instructions. (REAPPLIED)"
This reverts commit r336812, which broke compilation of a number
of projects, see PR38154.
llvm-svn: 336949
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This allows counters associated with unused functions to be
dead-stripped along with their functions. This approach is the same one
we used for PC tables.
Fixes an issue where LLD removes an unused PC table but leaves the 8-bit
counter.
Reviewers: eugenis
Reviewed By: eugenis
Subscribers: llvm-commits, hiraditya, kcc
Differential Revision: https://reviews.llvm.org/D49264
llvm-svn: 336941
|
|
|
|
| |
llvm-svn: 336939
|
|
|
|
|
|
|
| |
The piece above probably has the same problem, but I need
to try to come up with a test for it.
llvm-svn: 336935
|
|
|
|
|
|
|
|
|
|
| |
pipeline dependencies on StackProtector; NFC"
This was triggering pass scheduling failures.
This reverts commit r336929.
llvm-svn: 336934
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PrologEpilogInserter and StackColoring depend on the StackProtector analysis
being alive from the point it is run until PEI, which requires that they are all
scheduled in the same FunctionPassManager. Inserting a (machine) ModulePass
between StackProtector and PEI results in these passes being in separate
FunctionPassManagers and the StackProtector is not available for PEI.
PEI and StackColoring don't use much information from the StackProtector pass,
so transfering the required information to MachineFrameInfo is cleaner than
keeping the StackProtector pass around. This commit moves the SSP layout
information to MFI instead of keeping it in the pass.
This patch set (D37580, D37581, D37582, D37583, D37584, D37585, D37586, D37587)
is a first draft of the pagerando implementation described in
http://lists.llvm.org/pipermail/llvm-dev/2017-June/113794.html.
Patch by Stephen Crane <sjc@immunant.com>
Differential Revision: https://reviews.llvm.org/D49256
llvm-svn: 336929
|
|
|
|
|
|
|
|
|
|
|
|
| |
support for split DWARF
and no use of DW_FORM_rnglistx with the DW_AT_ranges attribute.
Reviewer: aprantl
Differential Revision: https://reviews.llvm.org/D49214
llvm-svn: 336927
|
|
|
|
|
|
|
|
| |
from the instruction.
We were accidentally connecting it to result 0 instead of result 1. This was caught by the machine verifier that noticed the flags were dead, but we were using them somehow. I'm still not clear what actually happened downstream.
llvm-svn: 336925
|
|
|
|
|
|
|
|
| |
x86_sse_cvttss2si and similar intrinsics.
This should fix a machine verifier error.
llvm-svn: 336924
|
|
|
|
|
|
| |
These instructions are added to AArch64 only.
llvm-svn: 336913
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
A complementary fold to D49179.
https://bugs.llvm.org/show_bug.cgi?id=38123
https://rise4fun.com/Alive/Rny
Caveat: one more thing in `test/Transforms/InstCombine/icmp-logical.ll` breaks.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49205
llvm-svn: 336911
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We have located a bug in AssemblyWriter::printModuleSummaryIndex(). This
function outputs path strings incorrectly. Backslashes in the strings
are not correctly escaped.
Consequently, if a path name contains a backslash followed by two
hexadecimal characters, the sequence is incorrectly interpreted when the
output is read by another component. This mangles the path and results
in error.
This patch fixes this issue by calling printEscapedString() to output
the module paths.
Patch by Chris Jackson.
Differential Revision: https://reviews.llvm.org/D49090
llvm-svn: 336908
|
|
|
|
|
|
|
|
|
|
| |
canWidenShuffleElements can do a better job if given a mask with ZeroableElements info. Apparently, ZeroableElements was being only used to identify AllZero candidates, but possibly we could plug it into more shuffle matchers.
Original Patch by Zvi Rackover @zvi
Differential Revision: https://reviews.llvm.org/D42044
llvm-svn: 336903
|
|
|
|
|
|
|
|
|
|
| |
Noticed while updating D42044, lowerV2X128VectorShuffle can improve the shuffle mask with the zeroable data to create a target shuffle mask to recognise more 'zero upper 128' patterns.
NOTE: lowerV4X128VectorShuffle could benefit as well but the code needs refactoring first to discriminate between SM_SentinelUndef and SM_SentinelZero for negative shuffle indices.
Differential Revision: https://reviews.llvm.org/D49092
llvm-svn: 336900
|
|
|
|
|
|
|
|
|
| |
We no longer care about the order of blocks in these collections,
so can change to SmallPtrSets, making contains checks quicker.
Differential revision: https://reviews.llvm.org/D49060
llvm-svn: 336897
|
|
|
|
|
|
|
|
|
|
|
| |
Mark standard encoded instructions and pseudo "standard encoded"
as not being in MIPS16e by default.
Patch by Simon Dardis.
Differential revision: https://reviews.llvm.org/D48379
llvm-svn: 336893
|
|
|
|
|
|
| |
i128 isn't a legal type in our x86 implementation today. So remove this and the few patterns that used it until it becomes necessary.
llvm-svn: 336889
|
|
|
|
| |
llvm-svn: 336887
|
|
|
|
|
|
| |
We now use llvm.fma.f32/f64 or llvm.x86.fmadd.f32/f64 intrinsics that use scalar types rather than vector types. So we don't these special ISD nodes that operate on the lowest element of a vector.
llvm-svn: 336883
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D49216
llvm-svn: 336881
|
|
|
|
| |
llvm-svn: 336879
|
|
|
|
|
|
|
|
|
|
| |
information for comparisons of parameters." as it's causing miscompiles.
A testcase was provided in the original review thread.
This reverts commit r336098.
llvm-svn: 336877
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
there for a long time.
The boolean tracking whether we saw a kill of the flags was supposed to
be per-block we are scanning and instead was outside that loop and never
cleared. It requires a quite contrived test case to hit this as you have
to have multiple levels of successors and interleave them with kills.
I've included such a test case here.
This is another bug found testing SLH and extracted to its own focused
patch.
llvm-svn: 336876
|
|
|
|
|
|
|
|
| |
with zero.
These showed up in some of the upgraded FMA code. We really need to improve these test cases more, but this helps for now.
llvm-svn: 336875
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
multiple successors where some of the uses end up killing the EFLAGS
register.
There was a bug where rather than skipping to the next basic block
queued up with uses once we saw a kill, we stopped processing the blocks
entirely. =/
Test case produces completely nonsensical code w/o this tiny fix.
This was found testing Speculative Load Hardening and split out of that
work.
Differential Revision: https://reviews.llvm.org/D49211
llvm-svn: 336874
|
|
|
|
|
|
| |
This converts them to what clang is now using for codegen. Unfortunately, there seem to be a few kinks to work out still. I'll try to address with follow up patches.
llvm-svn: 336871
|