| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
| |
The patch causes the failure of the test
compiler-rt/test/profile/Linux/counter_promo_nest.c
To unblock buildbot, revert the patch while investigation is in progress.
Differential Revision: https://reviews.llvm.org/D42691
llvm-svn: 324214
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The commit rL308422 introduces a restriction for folding unconditional
branches. Specifically if empty block with unconditional branch leads to
header of the loop then elimination of this basic block is prohibited.
However it seems this condition is redundantly strict.
If elimination of this basic block does not introduce more back edges
then we can eliminate this block.
The patch implements this relax of restriction.
Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl
Reviewed By: pacxx
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42691
llvm-svn: 324208
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ScalarEvolution::isKnownPredicate invokes isLoopEntryGuardedByCond without check
that SCEV is available at entry point of the loop. It is incorrect and fixed by patch.
To bugs additionally fixed:
assert is moved after the check whether loop is not a nullptr.
Usage of isLoopEntryGuardedByCond in ScalarEvolution::isImpliedCondOperandsViaNoOverflow
is guarded by isAvailableAtLoopEntry.
Reviewers: sanjoy, mkazantsev, anna, dorit, reames
Reviewed By: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42417
llvm-svn: 324204
|
|
|
|
|
|
|
|
|
|
|
|
| |
When using the partial inliner, we might have attributes for forwarded
varargs, but the CodeExtractor does not create an empty argument
attribute set for regular arguments in that case, because it does not know
of the additional arguments. So in case we have attributes for VarArgs, we
also have to make sure we create (empty) attributes for all regular arguments.
This fixes PR36210.
llvm-svn: 324197
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The type-shrinking logic in reduction detection, although narrow in scope, is
also rather ad-hoc, which has led to bugs (e.g., PR35734). This patch modifies
the approach to rely on the demanded bits and value tracking analyses, if
available. We currently perform type-shrinking separately for reductions and
other instructions in the loop. Long-term, we should probably think about
computing minimal bit widths in a more complete way for the loops we want to
vectorize.
PR35734
Differential Revision: https://reviews.llvm.org/D42309
llvm-svn: 324195
|
|
|
|
|
|
|
|
|
|
|
| |
This, in instcombine, allows conversions to i8/i16/i32 (very
common cases) even if the resulting type is not legal according
to the data layout. This can often open up extra combine
opportunities.
Differential Revision: https://reviews.llvm.org/D42424
llvm-svn: 324174
|
|
|
|
|
|
|
|
| |
Summary:
Small NFC change to change the name of the function used getting and setting
the alignment of a memset.
llvm-svn: 324148
|
|
|
|
| |
llvm-svn: 324122
|
|
|
|
| |
llvm-svn: 324118
|
|
|
|
|
|
| |
Was requested during review of D42798.
llvm-svn: 324095
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When creating the debug fragments for a SRA'd variable, use the types'
allocation sizes. This fixes issues where the pass would emit too small
fragments, placed at the wrong offset, for padded types.
An example of this is long double on x86. The type is represented using
x86_fp80, which is 10 bytes, but the value is aligned to 12/16 bytes.
The padding is included in the type's DW_AT_byte_size attribute;
therefore, the fragments should also include that. Newer GCC releases
(I tested 7.2.0) emit 12/16-byte pieces for long double. Earlier
releases, e.g. GCC 5.5.0, behaved as LLVM did, i.e. by emitting a
10-byte piece, followed by an empty 2/6-byte piece for the padding.
Failing to cover all `DW_AT_byte_size' bytes of a value with non-empty
pieces results in the value being printed as <optimized out> by GDB.
Patch by: David Stenberg
Reviewers: aprantl, JDevlieghere
Reviewed By: aprantl, JDevlieghere
Subscribers: llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D42807
llvm-svn: 324066
|
|
|
|
| |
llvm-svn: 324040
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the enhancement suggested in D42536 to fix a shortcoming in
regular InstCombine's canEvaluate* functionality.
When we have multiple uses of a value, but they're all in one instruction, we can
allow that expression to be narrowed or widened for the same cost as a single-use
value.
AFAICT, this can only matter for multiply: sub/and/or/xor/select would be simplified
away if the operands are the same value; add becomes shl; shifts with a variable shift
amount aren't handled.
Differential Revision: https://reviews.llvm.org/D42739
llvm-svn: 324014
|
|
|
|
|
|
|
| |
Looks like it's causing timeouts out on at least ppc64le
buildbots.
llvm-svn: 323959
|
|
|
|
|
|
|
|
|
|
|
| |
This, in instcombine, allows conversions to i8/i16/i32 (very
common cases) even if the resulting type is not legal according
to the data layout. This can often open up extra combine
opportunities.
Differential Revision: https://reviews.llvm.org/D42424
llvm-svn: 323951
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Before emitting code for scaled registers, we prevent
SCEVExpander from hoisting any scaled addressing mode
by emitting all the bases first. However, these bases
are being forced to the final type, resulting in some
odd code.
For example, if the type of the base is an integer and
the final type is a pointer, we will emit an inttoptr
for the base, a ptrtoint for the scale, and then a
'reverse' GEP where the GEP pointer is actually the base
integer and the index is the pointer. It's more intuitive
to use the pointer as a pointer and the integer as index.
Patch by: Bevin Hansson
Reviewers: atrick, qcolombet, sanjoy
Reviewed By: qcolombet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42103
llvm-svn: 323946
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
evaluation
For very, very large global initializers which can be statically evaluated, the
code would create vectors of temporary Constants, modifying them in place,
before committing the resulting Constant aggregate to the global's initializer
value. This had effectively O(n^2) complexity in the size of the global
initializer and would cause memory and non-termination issues compiling some
workloads.
This change performs the static initializer evaluation and creation in batches,
once for each global in the evaluated IR memory. The existing code is maintained
as a last resort when the initializers are more complex than simple values in a
large aggregate. This should theoretically by NFC, no test as the example case
is massive. The existing test cases pass with this, as well as the llvm test
suite.
To give an example, consider the following C++ code adapted from the clang
regression tests:
struct S {
int n = 10;
int m = 2 * n;
S(int a) : n(a) {}
};
template<typename T>
struct U {
T *r = &q;
T q = 42;
U *p = this;
};
U<S> e;
The global static constructor for 'e' will need to initialize 'r' and 'p' of
the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
members. This batch algorithm will simply use general CommitValueTo() method
to handle the complex nested S struct initialization of 'q', before
processing the outermost members in a single batch. Using CommitValueTo() to
handle member in the outer struct is inefficient when the struct/array is
very large as we end up creating and destroy constant arrays for each
initialization.
For the above case, we expect the following IR to be generated:
%struct.U = type { %struct.S*, %struct.S, %struct.U* }
%struct.S = type { i32, i32 }
@e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
i64 0, i32 1),
%struct.S { i32 42, i32 84 }, %struct.U* @e }
The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
constant expression, while the other two elements of @e are "simple".
Differential Revision: https://reviews.llvm.org/D42612
llvm-svn: 323933
|
|
|
|
|
|
|
| |
If SplitBlockPredecessors was used on a function entry block,
it wouldn't update the dominator tree.
llvm-svn: 323928
|
|
|
|
|
|
|
|
|
|
|
| |
node correctly.
This covers the case where TruncInst leaf node is a constant expression.
See PR36121 for more details.
Differential Revision: https://reviews.llvm.org/D42622
llvm-svn: 323926
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If you have a long chain of select instructions created from something
like `int* p = &g; if (foo()) p += 4; if (foo2()) p += 4;` etc., a naive
recursive visitor will recursively visit each select twice, which is
O(2^N) in the number of select instructions. Use the visited set to cut
off recursion in this case.
(No testcase because this doesn't actually change the behavior, just the
time.)
Differential Revision: https://reviews.llvm.org/D42451
llvm-svn: 323910
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D41663
llvm-svn: 323908
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
!amdgpu.uniform needs to be preserved for AMDGPU, otherwise bad things
happen.
Reviewers: arsenm, nhaehnle, jingyue, broune, majnemer, bjarke.roune, dblaikie
Subscribers: wdng, tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D42744
llvm-svn: 323907
|
|
|
|
|
|
| |
We'd have to make the change suggested in D42536 3x otherwise.
llvm-svn: 323877
|
|
|
|
|
|
|
|
|
| |
Because dead code may contain non-standard IR that causes infinite looping or crashes in underlying analysis.
See PR36134 for more details.
Differential Revision: https://reviews.llvm.org/D42683
llvm-svn: 323862
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D42715
llvm-svn: 323844
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is exposed during ThinLTO compilation, when we import an alias by
creating a clone of the aliasee. Without this fix the debug type is
unnecessarily cloned and we get a duplicate, undoing the uniquing.
Fixes PR36089.
Reviewers: mehdi_amini, pcc
Subscribers: eraman, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41669
llvm-svn: 323813
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to mark
candidates with coldcc attribute.
This recommits r322721 reverted due to sanitizer memory leak build bot failures.
Original commit message:
This patch adds support for the coldcc calling convention for Power.
This changes the set of non-volatile registers. It includes a pass to stress
test the implementation by marking all static directly called functions with
the coldcc attribute through the option -enable-coldcc-stress-test. It also
includes an option, -ppc-enable-coldcc, to add the coldcc attribute to
functions which are cold at all call sites based on BlockFrequencyInfo when
the containing function does not call any non cold functions.
Differential Revision: https://reviews.llvm.org/D38413
llvm-svn: 323778
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
There's an asymmetry in the definitions of findBaseDefiningValueOfVector() and
findBaseDefiningValue() of RS4GC. The later handles call and invoke instructions,
and the former does not. This appears to be simple oversight. This patch remedies
the oversight by adding the call and invoke cases to findBaseDefiningValueOfVector().
Reviewers: DaniilSuchkov, anna
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42653
llvm-svn: 323764
|
|
|
|
|
|
|
|
|
|
|
|
| |
We missed a critical check in D30703. We must make sure that no intermediate
store is sitting between the stores that we want to merge.
This should fix:
https://bugs.llvm.org/show_bug.cgi?id=36129
Differential Revision: https://reviews.llvm.org/D42663
llvm-svn: 323759
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The JumpThreading pass has several locations where to the variable name LI
refers to a LoadInst type. This is confusing and inhibits the ability to use
LI for LoopInfo as a member of the JumpThreading class. Minor formatting
and comments were also altered to reflect this change.
Reviewers: dberlin, kuba, spop, sebpop
Reviewed by: sebpop
Subscribers: sebpop, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D42601
llvm-svn: 323695
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323662
|
|
|
|
|
|
|
|
|
|
|
| |
Implementation marks non-prevailing symbols as not live in the summary.
Then them are dropped in backends.
Fixes https://bugs.llvm.org/show_bug.cgi?id=35938
Differential revision: https://reviews.llvm.org/D42107
llvm-svn: 323633
|
|
|
|
|
|
|
|
|
|
| |
This pretty much reverts r322006, except that we keep the test,
because we work around the issue exposed in a different way (a
recursion limit in value tracking). There's still probably some
sequence that exposes this problem, and the proper way to fix that
for somebody who has time is outlined in the code review.
llvm-svn: 323630
|
|
|
|
|
|
| |
"to to" -> "to"
llvm-svn: 323628
|
|
|
|
|
|
|
|
| |
as shuffle."
This reverts commit r323530 to fix possible problems in users code.
llvm-svn: 323581
|
|
|
|
|
|
| |
This reverts commit r323533 to fix possible problems in users code.
llvm-svn: 323580
|
|
|
|
|
|
| |
This fixes a think-o in r323574.
llvm-svn: 323576
|
|
|
|
|
|
|
| |
When there are no uses of profiling intrinsics in a module, and there's
no coverage data to lower, InstrProfiling has no work to do.
llvm-svn: 323574
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A cast from A to B is eliminable if its result is casted to C, and if
the pair of casts could just be expressed as a single cast. E.g here,
%c1 is eliminable:
%c1 = zext i16 %A to i32
%c2 = sext i32 %c1 to i64
InstCombine optimizes away eliminable casts. This patch teaches it to
insert a dbg.value intrinsic pointing to the final result, so that local
variables pointing to the eliminable result are preserved.
Differential Revision: https://reviews.llvm.org/D42566
llvm-svn: 323570
|
|
|
|
| |
llvm-svn: 323533
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323530
|
|
|
|
|
|
|
|
|
|
|
|
| |
- using qualified pointer addrspace in intrinsics class to avoid .f32 mangling
- changed too common atomic mangling to ds
- added missing intrinsics to AMDGPUTTIImpl::getTgtMemIntrinsic
Reviewed by: b-sumner
Differential Revision: https://reviews.llvm.org/D42383
llvm-svn: 323516
|
|
|
|
|
|
|
|
|
| |
Fix infinite loop when recording conditions by correctly marking basic
blocks as visited.
Fixes https://bugs.llvm.org/show_bug.cgi?id=36105
llvm-svn: 323515
|
|
|
|
|
|
| |
"in in" -> "in", "on on" -> "on" etc.
llvm-svn: 323508
|
|
|
|
|
|
|
|
|
|
|
| |
Inserting a dbg.value instruction at the start of a basic block with a
landingpad instruction triggers a verifier failure. We should be OK if
we insert the instruction a bit later.
Speculative fix for the bot failure described here:
https://reviews.llvm.org/D42551
llvm-svn: 323482
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The intent of this is to allow the code to be used with ThinLTO. In
Thinlink phase, a traditional Callgraph can not be computed even though
all the necessary information (nodes and edges of a call graph) is
available. This is due to the fact that CallGraph class is closely tied
to the IR. This patch first extends GraphTraits to add a CallGraphTraits
graph. This is then used to implement a version of counts propagation
on a generic callgraph.
Reviewers: davidxl
Subscribers: mehdi_amini, tejohnson, llvm-commits
Differential Revision: https://reviews.llvm.org/D42311
llvm-svn: 323475
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch is an enhancement to propagate dbg.value information when
Phis are created on behalf of LCSSA. I noticed a case where a value
carried across a loop was reported as <optimized out>.
Specifically this case:
int bar(int x, int y) {
return x + y;
}
int foo(int size) {
int val = 0;
for (int i = 0; i < size; ++i) {
val = bar(val, i); // Both val and i are correct
}
return val; // <optimized out>
}
In the above case, after all of the interesting computation completes
our value is reported as "optimized out." This change will add a
dbg.value to correct this.
This patch also moves the dbg.value insertion routine from
LoopRotation.cpp into Local.cpp, so that we can share it in both places
(LoopRotation and LCSSA).
Patch by Matt Davis!
Differential Revision: https://reviews.llvm.org/D42551
llvm-svn: 323472
|
|
|
|
|
|
|
|
|
|
| |
This simply moves an existing utility to Utils for reuse.
Split out of: https://reviews.llvm.org/D42551
Patch by Matt Davis!
llvm-svn: 323471
|
|
|
|
|
|
|
|
|
|
| |
Right now clang uses "_n" suffix for some user space callbacks and "N" for the matching kernel ones. There's no need for this and it actually breaks kernel build with inline instrumentation. Use the same callback names for user space and the kernel (and also make them consistent with the names GCC uses).
Patch by Andrey Konovalov.
Differential Revision: https://reviews.llvm.org/D42423
llvm-svn: 323470
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
summary."
It was reverted after buildbot regressions.
Original commit message:
This allows relative block frequency of call edges to be passed
to the thinlink stage where it will be used to compute synthetic
entry counts of functions.
llvm-svn: 323460
|