| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
| |
The only difference between the two is a `dyn_cast<>` to
`GlobalVariable`. If optimizations have left anything behind when a
global gets replaced, then it doesn't seem like the debug info is dead.
I can't seem to find an optimization that would leave behind a
non-`GlobalVariable` without nulling the reference entirely, so I
haven't added a testcase (but I'll be deleting `getGlobal()` in a future
commit).
llvm-svn: 234792
|
| |
|
|
|
|
| |
[-Werror=attributes]". Very well then! NFC
llvm-svn: 234788
|
| |
|
|
|
|
| |
Use early-return style that's preferred in LLVM and updating the naming in places I touched with other changes in the last few days. Hopefully, NFC.
llvm-svn: 234785
|
| |
|
|
| |
llvm-svn: 234780
|
| |
|
|
|
|
| |
We use dummy calls to adjust the liveness of values over statepoints in the midst of the insertion. If there are no values which need held live, there's no point in actually inserting the holder.
llvm-svn: 234779
|
| |
|
|
|
|
|
|
|
|
| |
statepoint [NFC]
Since we're restructuring the CFG, we also need to make sure to update the analsis passes. While I'm touching the code, I dedicided to restructure it a bit. The code involved here was very confusing. This change moves the normalization to essentially being a pre-pass before the main insertion work and updates a few comments to actually say what is happening and *why*.
The restructuring should be covered by existing tests. I couldn't easily see how to create a test for the invalidation bug. Suggestions welcome.
llvm-svn: 234769
|
| |
|
|
|
|
| |
This is related to the issues addressed in 234651. These assertions check the properties ensured by that change at the place of use. Note that a similiar property is checked in checkBasicSSA, but without the reachability constraint. Technically, the liveness would be correct to include unreachable values, but this would be problematic for actual relocation.
llvm-svn: 234766
|
| |
|
|
|
|
|
|
|
|
| |
The check in question is attempting to help find cases where we haven't relocated a pointer at a safepoint we should have. It does this by coercing the value to null at any safepoint which doesn't relocate it.
Unfortunately, this turns out to be rather expensive in terms of memory usage and time. The number of stores inserted can grow with O(number of values x number of statepoints). On at least one example I looked at, over half of peak memory usage was coming from this check.
With this change, the check is no longer enabled by default in Asserts builds. It is enabled for expensive asserts builds and has a command line option to enable it in both Asserts and non-Asserts builds.
llvm-svn: 234761
|
| |
|
|
| |
llvm-svn: 234706
|
| |
|
|
|
|
|
|
| |
Clean up a predicate I added in r229731, fix the relevant comment and
add a test case. The earlier version is confusing to read and was also
buggy (probably not a coincidence) till Alexey fixed it in r233881.
llvm-svn: 234701
|
| |
|
|
|
|
| |
NFC
llvm-svn: 234694
|
| |
|
|
|
|
| |
These add no value but can make a class non-trivially copyable. NFC.
llvm-svn: 234688
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
|
| |
|
|
|
|
|
|
| |
Rewrite `DILocation::atSameLineAs()` as `MDLocation::canDiscriminate()`
with a doxygen comment explaining its purpose. I've added a few FIXMEs
where I think this check is too weak; fixing that is tracked by PR23199.
llvm-svn: 234674
|
| |
|
|
|
|
| |
A function which is used only in Asserts builds needs to be defined only in Asserts builds.
llvm-svn: 234667
|
| |
|
|
|
|
| |
Using a SetVector to replace equivelent but more verbose functionality.
llvm-svn: 234662
|
| |
|
|
|
|
|
|
| |
When rewriting statepoints to make relocations explicit, we need to have a conservative but consistent notion of where a particular pointer is live at a particular site. The old code just used dominance, which is correct, but decidedly more conservative then it needed to be. This patch implements a simple dataflow algorithm that's run one per function (well, twice counting fixup after base pointer insertion). There's still lots of room to make this faster, but it's fast enough for all practical purposes today.
Differential Revision: http://reviews.llvm.org/D8674
llvm-svn: 234657
|
| |
|
|
|
|
| |
Format the entire file to reduce diff of change to follow.
llvm-svn: 234656
|
| |
|
|
|
|
| |
After submitting 234651, I noticed I hadn't responded to a review comment by mjacob. This patch addresses that comment and fixes a Release only build problem due to an unused variable.
llvm-svn: 234653
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
single entry phis
Two related small changes:
Various dominance based queries about liveness can get confused if we're talking about unreachable blocks. To avoid reasoning about such cases, just remove them before rewriting statepoints.
Remove single entry phis (likely left behind by LCSSA) to reduce the number of live values.
Both of these are motivated by http://reviews.llvm.org/D8674 which will be submitted shortly.
Differential Revision: http://reviews.llvm.org/D8675
llvm-svn: 234651
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This patch adds limited support for inserting explicit relocations when there's a vector of pointers live over the statepoint. This doesn't handle the case where the vector contains a mix of base and non-base pointers; that's future work.
The current implementation just scalarizes the vector over the gc.statepoint before doing the explicit rewrite. An alternate approach would be to plumb the vector all the way though the backend lowering, but doing that appears challenging. In particular, the size of the indirect spill slot is currently assumed to be sizeof(pointer) throughout the backend.
In practice, this is enough to allow running the SLP and Loop vectorizers before RewriteStatepointsForGC.
Differential Revision: http://reviews.llvm.org/D8671
llvm-svn: 234647
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change moves creating calls to `llvm.uadd.with.overflow` from
InstCombine to CodeGenPrep. Combining overflow check patterns into
calls to the said intrinsic in InstCombine inhibits optimization because
it introduces an intrinsic call that not all other transforms and
analyses understand.
Depends on D8888.
Reviewers: majnemer, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8889
llvm-svn: 234638
|
| |
|
|
|
|
|
|
| |
WinEH currently turns invokes into calls. Long term, we will reconsider
this, but for now, make sure we remap the operands and clone the
successors of the new terminator.
llvm-svn: 234608
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CallSite roughly behaves as a common base CallInst and InvokeInst. Bring
the behavior closer to that model by making upcasts explicit. Downcasts
remain implicit and work as before.
Following dyn_cast as a mental model checking whether a Value *V isa
CallSite now looks like this:
if (auto CS = CallSite(V)) // think dyn_cast
instead of:
if (CallSite CS = V)
This is an extra token but I think it is slightly clearer. Making the
ctor explicit has the advantage of not accidentally creating nullptr
CallSites, e.g. when you pass a Value * to a function taking a CallSite
argument.
llvm-svn: 234601
|
| |
|
|
|
|
| |
No functional change intended.
llvm-svn: 234586
|
| |
|
|
|
|
|
|
|
| |
The code uses a priority queue and a worklist, which share the same
visited set, but the visited set is only updated when inserting into
the priority queue. Instead, switch to using separate visited sets
for the priority queue and worklist.
llvm-svn: 234425
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(Re-apply r234361 with a fix and a testcase for PR23157)
Both run-time pointer checking and the dependence analysis are capable
of dealing with uniform addresses. I.e. it's really just an orthogonal
property of the loop that the analysis computes.
Run-time pointer checking will only try to reason about SCEVAddRec
pointers or else gives up. If the uniform pointer turns out the be a
SCEVAddRec in an outer loop, the run-time checks generated will be
correct (start and end bounds would be equal).
In case of the dependence analysis, we work again with SCEVs. When
compared against a loop-dependent address of the same underlying object,
the difference of the two SCEVs won't be constant. This will result in
returning an Unknown dependence for the pair.
When compared against another uniform access, the difference would be
constant and we should return the right type of dependence
(forward/backward/etc).
The changes also adds support to query this property of the loop and
modify the vectorizer to use this.
Patch by Ashutosh Nema!
llvm-svn: 234424
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch adds an enum `OverflowCheckFlavor` and a function
`OptimizeOverflowCheck`. This will allow InstCombine to optimize
overflow checks without directly introducing an intermediate call to the
`llvm.$op.with.overflow` instrinsics.
This specific change is a refactoring and does not intend to change
behavior.
Reviewers: majnemer, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8888
llvm-svn: 234388
|
| |
|
|
|
|
|
|
|
|
| |
stores"
This reverts commit r234361.
It caused PR23157.
llvm-svn: 234387
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Both run-time pointer checking and the dependence analysis are capable
of dealing with uniform addresses. I.e. it's really just an orthogonal
property of the loop that the analysis computes.
Run-time pointer checking will only try to reason about SCEVAddRec
pointers or else gives up. If the uniform pointer turns out the be a
SCEVAddRec in an outer loop, the run-time checks generated will be
correct (start and end bounds would be equal).
In case of the dependence analysis, we work again with SCEVs. When
compared against a loop-dependent address of the same underlying object,
the difference of the two SCEVs won't be constant. This will result in
returning an Unknown dependence for the pair.
When compared against another uniform access, the difference would be
constant and we should return the right type of dependence
(forward/backward/etc).
The changes also adds support to query this property of the loop and
modify the vectorizer to use this.
Patch by Ashutosh Nema!
llvm-svn: 234361
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Replace all uses of `DITypedArray<>` with `MDTupleTypedArrayWrapper<>`
and `MDTypeRefArray`. The APIs are completely different, but the
provided functionality is the same: treat an `MDTuple` as if it's an
array of a particular element type.
To simplify this patch a bit, I've temporarily typedef'ed
`DebugNodeArray` to `DIArray` and `MDTypeRefArray` to `DITypeArray`.
I've also temporarily conditionalized the accessors to check for null --
eventually these should be changed to asserts and the callers should
check for null themselves.
There's a tiny accompanying patch to clang.
llvm-svn: 234290
|
| |
|
|
|
|
| |
Same as r234255, but for lib/Analysis and lib/Transforms.
llvm-svn: 234257
|
| |
|
|
| |
llvm-svn: 234224
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Instead of making a local copy of `checkInterfaceFunction` for each
sanitizer, move the function in a common place.
Reviewers: kcc, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8775
llvm-svn: 234220
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Remove `DIDescriptor::Verify()` and the `Verify()`s from subclasses.
They had already been gutted, and just did an `isa<>` check.
In a couple of cases I've temporarily dropped the check entirely, but
subsequent commits are going to disallow conversions to the
`DIDescriptor`s directly from `MDNode`, so the checks will come back in
another form soon enough.
llvm-svn: 234201
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This reduces handling &B[(1 << i) * s] to handling &B[i * S].
Test Plan: slsr-gep.ll
Reviewers: meheff
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D8837
llvm-svn: 234180
|
| |
|
|
| |
llvm-svn: 234127
|
| |
|
|
|
|
|
|
|
| |
There's still lots of callers passing nullptr, of course - some because
they'll never be migrated (InstCombines for bitcasts - well they don't
make any sense when the pointer type is opaque anyway, for example) and
others that will need more engineering to pass Types around.
llvm-svn: 234126
|
| |
|
|
| |
llvm-svn: 234108
|
| |
|
|
| |
llvm-svn: 234064
|
| |
|
|
| |
llvm-svn: 234058
|
| |
|
|
| |
llvm-svn: 234057
|
| |
|
|
|
|
|
|
|
| |
InstCombine didn't realize that it needs to use DataLayout to determine
how wide pointers are. This lead to assertion failures.
This fixes PR23113.
llvm-svn: 234046
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
The plan here is to push the API changes out from the common components
(like Constant::getGetElementPtr and IRBuilder::CreateGEP related
functions) and just update callers to either pass the type if it's
obvious, or pass null.
Do this with LoadInst as well and anything else that comes up, then to
start porting specific uses to not pass null anymore - this may require
some refactoring in each case.
llvm-svn: 234042
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This prevents us from running out of registers in the backend.
Introducing stack malloc calls prevents the backend from recognizing the
inline asm operands as stack objects. When the backend recognizes a
stack object, it doesn't need to materialize the address of the memory
in a physical register. Instead it generates a simple SP-based memory
operand. Introducing a stack malloc forces the backend to find a free
register for every memory operand. 32-bit x86 simply doesn't have enough
registers for this to succeed in most cases.
Reviewers: kcc, samsonov
Differential Revision: http://reviews.llvm.org/D8790
llvm-svn: 233979
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The old requirement on GEP candidates being in bounds is unnecessary.
For off-bound GEPs, we still have
&B[i * S] = B + (i * S) * e = B + (i * e) * S
Test Plan: slsr_offbound_gep in slsr-gep.ll
Reviewers: meheff
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8809
llvm-svn: 233949
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Require the pointee type to be passed explicitly and assert that it is
correct. For now it's possible to pass nullptr here (and I've done so in
a few places in this patch) but eventually that will be disallowed once
all clients have been updated or removed. It'll be a long road to get
all the way there... but if you have the cahnce to update your callers
to pass the type explicitly without depending on a pointer's element
type, that would be a good thing to do soon and a necessary thing to do
eventually.
llvm-svn: 233938
|
| |
|
|
| |
llvm-svn: 233881
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We used to do this before refactorings around r225640.
Some clang users checked for _chk libcall availability using:
__has_builtin(__builtin___memcpy_chk)
When compiling with -fno-builtin, this is always true.
When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
end up with fortified libcalls, which isn't acceptable in a freestanding
environment which only provides their non-fortified counterparts.
Until we change clang and/or teach external users to check for availability
differently, disregard the "nobuiltin" attribute and TLI::has.
Workaround for PR23093.
llvm-svn: 233776
|
| |
|
|
|
|
|
|
|
|
| |
pointee type
This pushes the use of PointerType::getElementType up into several
callers - I'll essentially just have to keep pushing that up the stack
until I can eliminate every call to it...
llvm-svn: 233604
|