| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The visitICmp analysis function would record compares of pointer types, as size 0. This causes the resulting memcmp() call to have the wrong total size.
Found with "self-build" of clang/LLVM on Windows.
Reviewers: christylee, trentxintong, courbet
Reviewed By: courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53536
llvm-svn: 345413
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support of `llvm.experimental.guard` intrinsics to non-trivial
simple loop unswitching. These intrinsics represent implicit control flow which
has pretty much the same semantics as usual conditional branches. The
algorithm of dealing with them is following:
- Consider guards as unswitching candidates;
- If a guard is considered the best candidate, turn it into a branch;
- Apply normal unswitching algorithm on this branch.
The patch has no compile time effect on code that does not contain any guards.
Differential Revision: https://reviews.llvm.org/D53744
Reviewed By: chandlerc
llvm-svn: 345387
|
| |
|
|
|
|
|
|
|
|
|
| |
We should be able to make all relevant checks before we actually start the non-trivial
unswitching, so that we could guarantee that once we have started the transform,
it will always succeed.
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D53747
llvm-svn: 345375
|
| |
|
|
|
|
|
|
|
| |
Replacing BinaryOperator::isFNeg(...) to avoid regressions when we
separate FNeg from the FSub IR instruction.
Differential Revision: https://reviews.llvm.org/D53650
llvm-svn: 345295
|
| |
|
|
|
|
|
|
| |
When SimplifyCFG changes the PHI node into a select instruction, the debug line records becomes ambiguous. It causes the debugger to display unreachable source lines.
Differential Revision: https://reviews.llvm.org/D53287
llvm-svn: 345250
|
| |
|
|
|
|
|
|
|
|
| |
Reviewers: craig.topper, andrew.w.kaylor, efriedma
Reviewed By: craig.topper, andrew.w.kaylor, efriedma
Differential Revision: https://reviews.llvm.org/D52709
llvm-svn: 345248
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Teach LoopRotate to preserve MemorySSA.
Enable tests for correctness, dependency disabled by default.
Subscribers: sanjoy, jlebar, Prazek, george.burgess.iv, llvm-commits
Differential Revision: https://reviews.llvm.org/D51718
llvm-svn: 345216
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The current splitting algorithm works in three stages:
1) Identify cold blocks, then
2) Use forward/backward propagation to mark hot blocks, then
3) Grow a SESE region of blocks *outside* of the set of hot blocks and
start outlining.
While testing this pass on Apple internal frameworks I noticed that some
kinds of control flow (e.g. loops) are never outlined, even though they
unconditionally lead to / follow cold blocks. I noticed two other issues
related to how cold regions are identified:
- An inconsistency can arise in the internal state of the hotness
propagation stage, as a block may end up in both the ColdBlocks set
and the HotBlocks set. Further inconsistencies can arise as these sets
do not match what's in ProfileSummaryInfo.
- It isn't necessary to limit outlining to single-exit regions.
This patch teaches the splitting algorithm to identify maximal cold
regions and outline them. A maximal cold region is defined as the set of
blocks post-dominated by a cold sink block, or dominated by that sink
block. This approach can successfully outline loops in the cold path. As
a side benefit, it maintains less internal state than the current
approach.
Due to a limitation in CodeExtractor, blocks within the maximal cold
region which aren't dominated by a single entry point (a so-called "max
ancestor") are filtered out.
Results:
- X86 (LNT + -Os + externals): 134KB of TEXT were outlined compared to
47KB pre-patch, or a ~3x improvement. Did not see a performance impact
across two runs.
- AArch64 (LNT + -Os + externals + Apple-internal benchmarks): 149KB
of TEXT were outlined. Ditto re: performance impact.
- Outlining results improve marginally in the internal frameworks I
tested.
Follow-ups:
- Outline more than once per function, outline large single basic
blocks, & try to remove unconditional branches in outlined functions.
Differential Revision: https://reviews.llvm.org/D53627
llvm-svn: 345209
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The current default of appending "_"+entry block label to the new
extracted cold function breaks demangling. Change the deliminator from
"_" to "." to enable demangling. Because the header block label will
be empty for release compile code, use "extracted" after the "." when
the label is empty.
Additionally, add a mechanism for the client to pass in an alternate
suffix applied after the ".", and have the hot cold split pass use
"cold."+Count, where the Count is currently 1 but can be used to
uniquely number multiple cold functions split out from the same function
with D53588.
Reviewers: sebpop, hiraditya
Subscribers: llvm-commits, erik.pilkington
Differential Revision: https://reviews.llvm.org/D53534
llvm-svn: 345178
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The original patch was committed here:
rL344609
...and reverted:
rL344612
...because it did not properly check/test data types before calling
ComputeNumSignBits().
The tests that caused bot failures for the previous commit are
over-reaching front-end tests that run the entire -O optimizer
pipeline:
Clang :: CodeGen/builtins-systemz-zvector.c
Clang :: CodeGen/builtins-systemz-zvector2.c
I've added a negative test here to ensure coverage for that case.
The new early exit check also tests the type of the 'B' parameter,
so we don't waste time on matching if either value is unsuitable.
Original commit message:
This is part of solving PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549
The patterns shown here are a special case of something
that we already convert to select. Using ComputeNumSignBits()
catches that case (but not the more complicated motivating
patterns yet).
The backend has hooks/logic to convert back to logic ops
if that's better for the target.
llvm-svn: 345149
|
| |
|
|
|
|
|
|
| |
This work is to avoid regressions when we seperate FNeg from the FSub IR instruction.
Differential Revision: https://reviews.llvm.org/D53205
llvm-svn: 345146
|
| |
|
|
|
|
| |
Investigating fails.
llvm-svn: 345123
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
masked-interleaving is enabled
Enable interleave-groups under fold-tail scenario for Opt for size compilation;
D50480 added support for vectorizing loops of arbitrary trip-count without a
remiander, which in turn makes everything in the loop conditional, including
interleave-groups if any. It therefore invalidated all interleave-groups
because we didn't have support for vectorizing predicated interleaved-groups
at the time. In the meantime, D53011 introduced this support, so we don't
have to invalidate interleave-groups when masked-interleaved support is enabled.
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: hsaito
Differential Revision: https://reviews.llvm.org/D53559
llvm-svn: 345115
|
| |
|
|
|
|
|
|
|
|
|
|
| |
LSR reassociates constants as unfolded offsets when the constants fit as
immediate add operands, which currently prevents such constants from being
combined later with loop invariant registers.
This patch modifies GenerateCombinations() to generate a second formula which
includes the unfolded offset in the combined loop-invariant register.
Differential Revision: https://reviews.llvm.org/D51861
llvm-svn: 345114
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
in the same round of SCC update.
In https://reviews.llvm.org/rL309784, inline history is added to prevent
infinite inlining across multiple run of inliner and SCC update, but the
history will only be kept when new SCC is actually generated during SCC update.
We found a case that SCC can be split and then merge into itself in the same
round of SCC update, so the same SCC will be pop out from UR.CWorklist and
then added back immediately, without any new SCC generated, that is why the
existing patch cannot catch the infinite inline case.
What the patch does is even if no new SCC is generated, if only the current
SCC appears in UR.CWorklist again, then keep the inline history.
Differential Revision: https://reviews.llvm.org/D52915
llvm-svn: 345103
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Outlined code is cold by assumption, so it makes sense to optimize it
for minimal code size rather than performance.
After r344869 moved the splitting pass to the end of the IR pipeline,
this does not result in much of a code size reduction. This is probably
because a comparatively small number backend transforms make use of the
MinSize hint.
Running LNT on x86_64, I see that 33/1020 binaries shrink for a total of
919 bytes of TEXT reduction. I didn't measure a significant performance
impact.
Differential Revision: https://reviews.llvm.org/D53518
llvm-svn: 345072
|
| |
|
|
|
|
|
|
|
|
|
|
| |
There's probably some vector-with-undef-element pattern
that shows an improvement, so this is probably not quite
'NFC'.
This is the last step towards removing the fake binop
queries for not/neg. Ie, there are no more uses of those
functions in trunk. Fneg should follow.
llvm-svn: 345050
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
booleans.
Summary:
TryToShrinkGlobalToBoolean, when possible, will split store <value> + load <value> into store <bool> + select <bool ? value : 0>. This preserves DebugLoc during that pass.
Fixes PR37959. The test case here is the simplified .ll for:
```
static int foo;
int bar() {
foo = 5;
return foo;
}
```
Reviewers: dblaikie, gbedwell, aprantl
Reviewed By: dblaikie
Subscribers: mehdi_amini, JDevlieghere, dexonsmith, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D53531
llvm-svn: 345046
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We need to update this code before introducing an 'fneg' instruction in IR,
so we might as well kill off the integer neg/not queries too.
This is no-functional-change-intended for scalar code and most vector code.
For vectors, we can see that the 'match' API allows for undef elements in
constants, so we optimize those cases better.
Ideally, there would be a test for each code diff, but I don't see evidence
of that for the existing code, so I didn't try very hard to come up with new
vector tests for each code change.
Differential Revision: https://reviews.llvm.org/D53533
llvm-svn: 345042
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Expand arithmetic reduction to include mul/and/or/xor instructions.
This patch just fixes the SLPVectorizer - the effective reduction costs for AVX1+ are still poor (see rL344846) and will need to be improved before SLP sees this as a valid transform - but we can already see the effect on SSE2 tests.
This partially helps PR37731, but doesn't fix it all as it still falls over on the extraction/reduction order for some reason.
Differential Revision: https://reviews.llvm.org/D53473
llvm-svn: 345037
|
| |
|
|
|
|
|
| |
This is another step towards completely removing the fake
binop queries for not/neg/fneg.
llvm-svn: 345036
|
| |
|
|
| |
llvm-svn: 345034
|
| |
|
|
|
|
|
|
|
| |
This pass could probably be modified slightly to allow
vector splat transforms for practically no cost, but
it only works on scalars for now. So the use of the
newer 'match' API should make no functional difference.
llvm-svn: 345030
|
| |
|
|
|
|
| |
out of revision 344883
llvm-svn: 345021
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
At compile-time, create an array of {PC,HumanReadableStackFrameDescription}
for every function that has an instrumented frame, and pass this array
to the run-time at the module-init time.
Similar to how we handle pc-table in SanitizerCoverage.
The run-time is dummy, will add the actual logic in later commits.
Reviewers: morehouse, eugenis
Reviewed By: eugenis
Subscribers: srhines, llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D53227
llvm-svn: 344985
|
| |
|
|
| |
llvm-svn: 344959
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: Emit optimization remark on successful hot cold split.
Reviewers: sebpop, hiraditya
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53512
llvm-svn: 344938
|
| |
|
|
|
|
| |
No functionality change.
llvm-svn: 344893
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
optimizing for size
LV is careful to respect -Os and not to create a scalar epilog in all cases
(runtime tests, trip-counts that require a remainder loop) except for peeling
due to gaps in interleave-groups. This patch fixes that; -Os will now have us
invalidate such interleave-groups and vectorize without an epilog.
The patch also removes a related FIXME comment that is now obsolete, and was
also inaccurate:
"FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a smaller
MaxVF that does not require a scalar epilog."
(requiresScalarEpilog() has nothing to do with VF).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53420
llvm-svn: 344883
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In the new+old pass manager, hot cold splitting was schedule too early.
Thanks to Vedant for pointing this out.
Reviewers: sebpop, vsk
Reviewed By: sebpop, vsk
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D53437
llvm-svn: 344869
|
| |
|
|
| |
llvm-svn: 344855
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I couldn't tell from svn history when these checks were added,
but it pre-dates the split of instcombine into its own directory
at rL92459.
The motivation for changing the check is partly shown by the
code in PR34724:
https://bugs.llvm.org/show_bug.cgi?id=34724
There are also existing regression tests for SLPVectorizer with
sequences of extract+insert that are likely assumed to become
shuffles by the vectorizer cost models.
llvm-svn: 344854
|
| |
|
|
| |
llvm-svn: 344852
|
| |
|
|
|
|
| |
Undo stray change introduced by r344725.
llvm-svn: 344814
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: Depends on D52765
Reviewers: aheejin, dschuff
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52766
llvm-svn: 344799
|
| |
|
|
| |
llvm-svn: 344793
|
| |
|
|
| |
llvm-svn: 344774
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
opt for size
When optimizing for size, a loop is vectorized only if the resulting vector loop
completely replaces the original scalar loop. This holds if no runtime guards
are needed, if the original trip-count TC does not overflow, and if TC is a
known constant that is a multiple of the VF. The last two TC-related conditions
can be overcome by
1. rounding the trip-count of the vector loop up from TC to a multiple of VF;
2. masking the vector body under a newly introduced "if (i <= TC-1)" condition.
The patch allows loops with arbitrary trip counts to be vectorized under -Os,
subject to the existing cost model considerations. It also applies to loops with
small trip counts (under -O2) which are currently handled as if under -Os.
The patch does not handle loops with reductions, live-outs, or w/o a primary
induction variable, and disallows interleave groups.
(Third, final and main part of -)
Differential Revision: https://reviews.llvm.org/D50480
llvm-svn: 344743
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In several places in the code we use the following pattern:
if (hasUnaryFloatFn(&TLI, Ty, LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
[...]
Value *Res = emitUnaryFloatFnCall(X, TLI.getName(LibFunc_tan), B, Attrs);
[...]
}
In short, we check if there is a lib-function for a certain type, and then
we _always_ fetch the name of the "double" version of the lib function and
construct a call to the appropriate function, that we just checked exists,
using that "double" name as a basis.
This is of course a problem in cases where the target doesn't support the
"double" version, but e.g. only the "float" version.
In that case TLI.getName(LibFunc_tan) returns "", and
emitUnaryFloatFnCall happily appends an "f" to "", and we erroneously end
up with a call to a function called "f".
To solve this, the above pattern is changed to
if (hasUnaryFloatFn(&TLI, Ty, LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
[...]
Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
LibFunc_tanl, B, Attrs);
[...]
}
I.e instead of first fetching the name of the "double" version and then
letting emitUnaryFloatFnCall() add the final "f" or "l", we let
emitUnaryFloatFnCall() fetch the right name from TLI.
Reviewers: eli.friedman, efriedma
Reviewed By: efriedma
Subscribers: efriedma, bjope, llvm-commits
Differential Revision: https://reviews.llvm.org/D53370
llvm-svn: 344725
|
| |
|
|
| |
llvm-svn: 344719
|
| |
|
|
| |
llvm-svn: 344718
|
| |
|
|
|
|
| |
a variable's type.
llvm-svn: 344717
|
| |
|
|
| |
llvm-svn: 344716
|
| |
|
|
|
|
|
| |
successors API or directly build the iterators out of the terminator
instruction and avoid requiring a TerminatorInst variable.
llvm-svn: 344715
|
| |
|
|
| |
llvm-svn: 344714
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This improves subsequent divergence analysis in some cases.
Change-Id: I5e95e7ec7fd3fa80d414d1a53a02fea23e3d67d3
Reviewers: arsenm, rampitec
Subscribers: jvesely, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D53316
llvm-svn: 344697
|
| |
|
|
|
|
|
| |
Just adding some useful statistics to LoopPredication pass
which was lacking any of these.
llvm-svn: 344681
|
| |
|
|
|
|
|
|
| |
Forgot to initialize the legacy pass in it's constructor.
Differential Revision: https://reviews.llvm.org/D53350
llvm-svn: 344659
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously we could only get the number of imported functions and
variables from the backend. This adds stats to the thin link where the
importing is decided.
Reviewers: wmi
Subscribers: inglorion, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D53337
llvm-svn: 344658
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Merge code used to get section start and section end pointers
for SanitizerCoverage constructors. This includes code that handles
getting the start pointers when targeting MSVC.
Reviewers: kcc, morehouse
Reviewed By: morehouse
Subscribers: kcc, hiraditya
Differential Revision: https://reviews.llvm.org/D53211
llvm-svn: 344657
|