| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch introduces a side table in Merge Functions to
efficiently remove functions from the function set when functions
they refer to are merged. Previously these functions would need to
be compared lg(N) times to find the appropriate FunctionNode in the
tree to defer. With the recent determinism changes, this comparison
is more expensive. In addition, the removal function would not always
actually remove the function from the set (i.e. after remove(F),
there would sometimes still be a node in the tree which contains F).
With these changes, these functions are properly deferred, and so more
functions can be merged. In addition, when there are many merged
functions (and thus more deferred functions), there is a speedup:
chromium: 48678 merged -> 49380 merged; 6.58s -> 5.49s
libxul.so: 41004 merged -> 41030 merged; 8.02s -> 6.94s
mysqld: 1607 merged -> 1607 merged (same); 0.215s -> 0.212s (probably noise)
Author: jrkoenig
Reviewers: jfb, dschuff
Subscribers: llvm-commits, nlewycky
Differential revision: http://reviews.llvm.org/D12537
llvm-svn: 246735
|
|
|
|
| |
llvm-svn: 246722
|
|
|
|
|
|
| |
Thanks to David Blaikie for noticing in previous commit.
llvm-svn: 246721
|
|
|
|
|
|
|
|
| |
Fix a bug in change 246133. I didn't handle the case where we had a cycle in the use graph and could add an instruction we were about to erase back on to the worklist. Oddly, I have not been able to write a small test case for this, even with the AssertingVH added. I have confirmed the basic theory for the fix on a large failing example, but all attempts to reduce that to something appropriate for a test case have failed.
Differential Revision: http://reviews.llvm.org/D12575
llvm-svn: 246718
|
|
|
|
| |
llvm-svn: 246717
|
|
|
|
| |
llvm-svn: 246713
|
|
|
|
|
|
|
|
|
|
| |
There was infinite loop because it was trying to change assume(true) into
assume(true)
Also added handling when assume(false) appear
http://reviews.llvm.org/D12516
llvm-svn: 246697
|
|
|
|
|
|
|
|
|
| |
Last time code run into assertion `BBE.isSingleEdge()` in
lib/IR/Dominators.cpp:200.
http://reviews.llvm.org/D12170
llvm-svn: 246696
|
|
|
|
|
|
|
|
|
|
|
| |
After hitting @llvm.assume(X) we can:
- propagate equality that X == true
- if X is icmp/fcmp (with eq operation), and one of operand
is constant we can change all variables with constants in the same BasicBlock
http://reviews.llvm.org/D11918
llvm-svn: 246695
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This makes RemoveDuplicatePHINodes more effective and fixes an assertion
failure. Triggering the assertions requires a DenseSet reallocation
so this change only contains a constructive test.
I'll explain the issue with a small example. In the following function
there's a duplicate PHI, %4 and %5 are identical. When this is found
the DenseSet in RemoveDuplicatePHINodes contains %2, %3 and %4.
define void @F() {
br label %1
; <label>:1 ; preds = %1, %0
%2 = phi i32 [ 42, %0 ], [ %4, %1 ]
%3 = phi i32 [ 42, %0 ], [ %5, %1 ]
%4 = phi i32 [ 42, %0 ], [ 23, %1 ]
%5 = phi i32 [ 42, %0 ], [ 23, %1 ]
br label %1
}
after RemoveDuplicatePHINodes runs the function looks like this. %3 has
changed and is now identical to %2, but RemoveDuplicatePHINodes never
saw this.
define void @F() {
br label %1
; <label>:1 ; preds = %1, %0
%2 = phi i32 [ 42, %0 ], [ %4, %1 ]
%3 = phi i32 [ 42, %0 ], [ %4, %1 ]
%4 = phi i32 [ 42, %0 ], [ 23, %1 ]
br label %1
}
If the DenseSet does a reallocation now it will reinsert all
keys and stumble over %3 now having a different hash value than it had
when inserted into the map for the first time. This change clears the
set whenever a PHI is deleted and starts the progress from the
beginning, allowing %3 to be deleted and avoiding inconsistent DenseSet
state. This potentially has a negative performance impact because
it rescans all PHIs, but I don't think that this ever makes a difference
in practice.
llvm-svn: 246694
|
|
|
|
|
|
|
|
|
|
| |
instead
We were bailing to two places if our runtime checks failed. If the initial overflow check failed, we'd go to ScalarPH. If any other check failed, we'd go to MiddleBlock. This caused us to have to have an extra PHI per induction and reduction as the vector loop's exit block was not dominated by its latch.
There's no need to have this behavior - if we just always go to ScalarPH we can get rid of a bunch of complexity.
llvm-svn: 246637
|
|
|
|
|
|
|
|
| |
clear.
NFC.
llvm-svn: 246636
|
|
|
|
|
|
| |
NFC.
llvm-svn: 246635
|
|
|
|
|
|
|
|
| |
This reduces the complexity of createEmptyBlock() and will open the door to further refactoring.
The test change is simply because we're now constant folding a trivial test.
llvm-svn: 246634
|
|
|
|
|
|
| |
... and do a tad of tidyup while we're at it. Because StartIdx must now be zero, there's no difference between Count and EndIdx.
llvm-svn: 246633
|
|
|
|
|
|
| |
It makes things easier to understand if this is in a helper method. This is part of my ongoing spaghetti-removal operation on createEmptyLoop.
llvm-svn: 246632
|
|
|
|
|
|
|
|
|
|
| |
There's no need to widen canonical induction variables. It's just as efficient to create a *new*, wide, induction variable.
Consider, if we widen an indvar, then we'll have to truncate it before its uses anyway (1 trunc). If we create a new indvar instead, we'll have to truncate that instead (1 trunc) [besides which IndVars should go and clean up our mess after us anyway on principle].
This lets us remove a ton of special-casing code.
llvm-svn: 246631
|
|
|
|
|
|
|
|
|
|
| |
Vectorized loops only ever have one induction variable. All induction PHIs from the scalar loop are rewritten to be in terms of this single indvar.
We were trying very hard to pick an indvar that already existed, even if that indvar wasn't canonical (didn't start at zero). But trying so hard is really fruitless - creating a new, canonical, indvar only results in one extra add in the worst case and that add is trivially easy to push through the PHI out of the loop by instcombine.
If we try and be less clever here and instead let instcombine clean up our mess (as we do in many other places in LV), we can remove unneeded complexity.
llvm-svn: 246630
|
|
|
|
|
|
|
| |
to save running many ModulePasses on available external functions that
are thrown away anyhow.
llvm-svn: 246619
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D12534
llvm-svn: 246564
|
|
|
|
| |
llvm-svn: 246486
|
|
|
|
|
|
|
|
| |
Teach FunctionAttr to infer the nonnull attribute on return values of functions which never return a potentially null value. This is done both via a conservative local analysis for the function itself and a optimistic per-SCC analysis. If no function in the SCC returns anything which could be null (other than values from other functions in the SCC), we can conclude no function returned a null pointer. Even if some function within the SCC returns a null pointer, we may be able to locally conclude that some don't.
Differential Revision: http://reviews.llvm.org/D9688
llvm-svn: 246476
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
JumpThreading shouldn't duplicate a convergent call, because that would move a convergent call into a control-inequivalent location. For example,
if (cond) {
...
} else {
...
}
convergent_call();
if (cond) {
...
} else {
...
}
should not be optimized to
if (cond) {
...
convergent_call();
...
} else {
...
convergent_call();
...
}
Test Plan: test/Transforms/JumpThreading/basic.ll
Patch by Xuetian Weng.
Reviewers: resistor, arsenm, jingyue
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12484
llvm-svn: 246415
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PR24605 is caused due to an incorrect insert point in instcombine's IR
builder. When simplifying
%t = add X Y
...
%m = icmp ... %t
the replacement for %t should be placed before %t, not before %m, as
there could be a use of %t between %t and %m.
llvm-svn: 246315
|
|
|
|
|
|
|
| |
http://reviews.llvm.org/D6952
PR20673
llvm-svn: 246313
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch removes two remaining places where pointer value comparisons
are used to order functions: comparing range annotation metadata, and comparing
block address constants. (These are both rare cases, and so no actual
non-determinism was observed from either case).
The fix for range metadata is simple: the annotation always consists of a pair
of integers, so we just order by those integers.
The fix for block addresses is more subtle. Two constants are the same if they
are the same basic block in the same function, or if they refer to corresponding
basic blocks in each respective function. Note that in the first case, merging
is trivially correct. In the second, the correctness of merging relies on the
fact that the the values of block addresses cannot be compared. This change is
actually an enhancement, as these functions could not previously be merged (see
merge-block-address.ll).
There is still a problem with cross function block addresses, in that constants
pointing to a basic block in a merged function is not updated.
This also more robustly compares floating point constants by all fields of their
semantics, and fixes a dyn_cast/cast mixup.
Author: jrkoenig
Reviewers: dschuff, nlewycky, jfb
Subscribers llvm-commits
Differential revision: http://reviews.llvm.org/D12376
llvm-svn: 246305
|
|
|
|
|
|
|
|
|
|
|
|
| |
handle more allocas with loads past the end of the alloca.
I suspect there are some related crashers with slightly different
patterns, but I'll fix those and add test cases as I find them.
Thanks to David Majnemer for the excellent test case reduction here.
Made this super simple to debug and fix.
llvm-svn: 246289
|
|
|
|
|
|
| |
These two commits cause clang/llvm bootstrap to hang.
llvm-svn: 246279
|
|
|
|
|
|
|
|
|
| |
Last time code run into assertion `BBE.isSingleEdge()` in
lib/IR/Dominators.cpp:200.
http://reviews.llvm.org/D12170
llvm-svn: 246244
|
|
|
|
|
|
|
|
|
|
|
| |
After hitting @llvm.assume(X) we can:
- propagate equality that X == true
- if X is icmp/fcmp (with eq operation), and one of operand
is constant we can change all variables with constants in the same BasicBlock
http://reviews.llvm.org/D11918
llvm-svn: 246243
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch changes the analysis diagnostics produced when loops with
floating-point recurrences or memory operations are identified. The new messages
say "cannot prove it is safe to reorder * operations; allow reordering by
specifying #pragma clang loop vectorize(enable)". Depending on the type of
diagnostic the message will include additional options such as ffast-math or
__restrict__.
This patch also allows the vectorize(enable) pragma to override the low pointer
memory check threshold. When the hint is given a higher threshold is used.
See the clang patch for the options produced for each diagnostic.
llvm-svn: 246187
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unlike scalar operations, we can perform vector operations on element types that
are smaller than the native integer types. We type-promote scalar operations if
they are smaller than a native type (e.g., i8 arithmetic is promoted to i32
arithmetic on Arm targets). This patch detects and removes type-promotions
within the reduction detection framework, enabling the vectorization of small
size reductions.
In the legality phase, we look through the ANDs and extensions that InstCombine
creates during promotion, keeping track of the smaller type. In the
profitability phase, we use the smaller type and ignore the ANDs and extensions
in the cost model. Finally, in the code generation phase, we truncate the result
of the reduction to allow InstCombine to rewrite the entire expression in the
smaller type.
This fixes PR21369.
http://reviews.llvm.org/D12202
Patch by Matt Simpson <mssimpso@codeaurora.org>!
llvm-svn: 246149
|
|
|
|
|
|
|
|
| |
... and move it into LoopUtils where it can be used by other passes, just like ReductionDescriptor. The API is very similar to ReductionDescriptor - that is, not very nice at all. Sorting these both out will come in a followup.
NFC
llvm-svn: 246145
|
|
|
|
| |
llvm-svn: 246141
|
|
|
|
|
|
|
|
|
|
|
|
| |
A release fence acts as a publication barrier for stores within the current thread to become visible to other threads which might observe the release fence. It does not require the current thread to observe stores performed on other threads. As a result, we can allow store-load and load-store forwarding across a release fence.
We do need to make sure that stores before the fence can't be eliminated even if there's another store to the same location after the fence. In theory, we could reorder the second store above the fence and *then* eliminate the former, but we can't do this if the stores are on opposite sides of the fence.
Note: While more aggressive then what's there, this patch is still implementing a really conservative ordering. In particular, I'm not trying to exploit undefined behavior via races, or the fact that the LangRef says only 'atomic' accesses are ordered w.r.t. fences.
Differential Revision: http://reviews.llvm.org/D11434
llvm-svn: 246134
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
pointers
When computing base pointers, we introduce new instructions to propagate the base of existing instructions which might not be bases. However, the algorithm doesn't make any effort to recognize when the new instruction to be inserted is the same as an existing one already in the IR. Since this is happening immediately before rewriting, we don't really have a chance to fix it after the pass runs without teaching loop passes about statepoints.
I'm really not thrilled with this patch. I've rewritten it 4 different ways now, but this is the best I've come up with. The case where the new instruction is just the original base defining value could be merged into the existing algorithm with some complexity. The problem is that we might have something like an extractelement from a phi of two vectors. It may be trivially obvious that the base of the 0th element is an existing instruction, but I can't see how to make the algorithm itself figure that out. Thus, I resort to the call to SimplifyInstruction instead.
Note that we can only adjust the instructions we've inserted ourselves. The live sets are still being tracked in side structures at this point in the code. We can't easily muck with instructions which might be in them. Long term, I'm really thinking we need to materialize the live pointer sets explicitly in the IR somehow rather than using side structures to track them.
Differential Revision: http://reviews.llvm.org/D12004
llvm-svn: 246133
|
|
|
|
|
|
|
|
| |
This patch ensures that every analysis diagnostic produced by the vectorizer
will be printed if the loop has a vectorization hint on it. The condition has
also been improved to prevent printing when a disabling hint is specified.
llvm-svn: 246132
|
|
|
|
|
|
|
|
|
|
| |
As Sanjoy pointed out over in http://reviews.llvm.org/D11819, a switch on an icmp should always be able to become a branch instruction. This patch generalizes that notion slightly to prove that the default case of a switch is unreachable if the cases completely cover all possible bit patterns in the condition. Once that's done, the switch to branch conversion kicks in just fine.
Note: Duplicate case values are disallowed by the LangRef and verifier.
Differential Revision: http://reviews.llvm.org/D11995
llvm-svn: 246125
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The problem here were the function analyses invoked by the function pass
manager from the new IPO pass. I looked at other IPO passes needing
dominance information and the only one that requires it (partial
inliner) does not use the standard dependency mechanism.
This patch mimics what the partial inliner does to compute dominance,
post-dominance and loop info. One thing I like about this approach is
that I can delay the computation of all this until I actually need it.
This should bring the ASAN buildbot back to green. If there's a better
way to fix this, I'll do it in a follow-up patch.
llvm-svn: 246066
|
|
|
|
|
|
|
| |
cbrt(sqrt(x)) calculates the sixth root, not the ninth root.
cbrt(cbrt(x)) calculates the ninth root.
llvm-svn: 246046
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was only added to preserve the old ScalarRepl's use of SSAUpdater
which was originally to avoid use of dominance frontiers. Now, we only
need a domtree, and we'll need a domtree right after this pass as well
and so it makes perfect sense to always and only use the dom-tree
powered mem2reg. This was flag-flipper earlier and has stuck reasonably
so I wanted to gut the now-dead code out of SROA before we waste more
time with it. Among other things, this will make passmanager porting
easier.
llvm-svn: 246028
|
|
|
|
| |
llvm-svn: 246018
|
|
|
|
| |
llvm-svn: 246017
|
|
|
|
| |
llvm-svn: 246016
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: When comparing basic blocks, there is an additional check that two Value*'s should have the same ID, which interferes with merging equivalent constants of different kinds (such as a ConstantInt and a ConstantPointerNull in the included testcase). The cmpValues function already ensures that the two values in each function are the same, so removing this check should not cause incorrect merging.
Also, the type comparison is redundant, based on reviewing the code and testing on the test suite and several large LTO bitcodes.
Author: jrkoenig
Reviewers: nlewycky, jfb, dschuff
Subscribers: llvm-commits
Differential revision: http://reviews.llvm.org/D12302
llvm-svn: 246001
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change makes the variable argument intrinsics, `llvm.va_start` and
`llvm.va_copy`, and the `va_arg` instruction behave as they do on Windows
inside a `CallingConv::X86_64_Win64` function. It's needed for a Clang patch
I have to add support for GCC's `__builtin_ms_va_list` constructs.
Reviewers: nadav, asl, eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1622
llvm-svn: 245990
|
|
|
|
|
|
|
|
|
|
| |
Extend signed relational comparison instrumentation with a special
case for comparisons with -1. This fixes an MSan false positive when
such comparison is used as a sign bit test.
https://llvm.org/bugs/show_bug.cgi?id=24561
llvm-svn: 245980
|
|
|
|
| |
llvm-svn: 245957
|
|
|
|
| |
llvm-svn: 245955
|
|
|
|
|
|
|
|
|
|
|
| |
loop iterations check.
The loop minimum iterations check below ensures the loop has enough trip count so the generated
vector loop will likely be executed, and it covers the overflow check.
Differential Revision: http://reviews.llvm.org/D12107.
llvm-svn: 245952
|