| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In rL300494 there was an attempt to deal with excessive compile time on
invocations of getSign/ZeroExtExpr using local caching. This approach only
helps if we request the same SCEV multiple times throughout recursion. But
in the bug PR33431 we see a case where we request different values all the time,
so caching does not help and the size of the cache grows enormously.
In this patch we remove the local cache for this methods and add the recursion
depth limit instead, as we do for arithmetics. This gives us a guarantee that the
invocation sequence is limited and reasonably short.
Differential Revision: https://reviews.llvm.org/D34273
llvm-svn: 306785
|
|
|
|
| |
llvm-svn: 306712
|
|
|
|
|
|
| |
version.
llvm-svn: 306703
|
|
|
|
| |
llvm-svn: 306701
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
I was testing using this expansion logic in other cases besides
NVPTX, and found some runtime failures due to the lack of a check
for a zero length memcpy/memset before the loop. There is already
such a check in the memmove expansion code though.
Reviewers: hfinkel
Subscribers: jholewinski, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D34707
llvm-svn: 306541
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When simplifying an instruction that has been re-mapped, it should never
simplify to an instruction in the original function. In the edge case
where we are inlining a function into itself, the existing code led to
incorrect behavior. Replace the incorrect code with an assert verifying
that we never expect simplification to produce an instruction in the old
function, unless the functions are the same.
Differential Revision: https://reviews.llvm.org/D33850
llvm-svn: 306495
|
|
|
|
|
|
|
|
|
| |
BlockAddress are only valid within their function context, which does not
interact well with CodeExtractor. Detect this case and prevent it.
Differential Revision: https://reviews.llvm.org/D33839
llvm-svn: 306448
|
|
|
|
|
|
|
| |
Instead of getBackEdgeTakenCount, use getExitCount on the latch exiting block
(which is proven to be the only exiting block in the loop to be unrolled).
llvm-svn: 306410
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
metadata out of InstCombine and into helpers.
NFC, this just exposes the logic used by InstCombine when propagating
metadata from one load instruction to another. The plan is to use this
in SROA to address PR32902.
If anyone has better ideas about how to factor this or name variables,
I'm all ears, but this seemed like a pretty good start and lets us make
progress on the PR.
This is based on a patch by Ariel Ben-Yehuda (D34285).
llvm-svn: 306267
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was reverted in r306252, but I already had the bug fixed and was
just trying to form a test case.
The original commit factored the logic for forming dedicated exits
inside of LoopSimplify into a helper that could be used elsewhere and
with an approach that required fewer intermediate data structures. See
that commit for full details including the change to the statistic, etc.
The code looked fine to me and my reviewers, but in fact didn't handle
indirectbr correctly -- it left the 'InLoopPredecessors' vector dirty.
If you have code that looks *just* right, you can end up leaking these
predecessors into a subsequent rewrite, and crash deep down when trying
to update PHI nodes for predecessors that don't exist.
I've added an assert that makes the bug much more obvious, and then
changed the code to reliably clear the vector so we don't get this bug
again in some other form as the code changes.
I've also added a test case that *does* manage to catch this while also
giving some nice positive coverage in the face of indirectbr.
The real code that found this came out of what I think is CPython's
interpreter loop, but any code with really "creative" interpreter loops
mixing indirectbr and other exit paths could manage to tickle the bug.
I was hard to reduce the original test case because in addition to
having a particular pattern of IR, the whole thing depends on the order
of the predecessors which is in turn depends on use list order. The test
case added here was designed so that in multiple different predecessor
orderings it should always end up going down the same path and tripping
the same bug. I hope. At least, it tripped it for me without
manipulating the use list order which is better than anything bugpoint
could do...
llvm-svn: 306257
|
|
|
|
|
|
|
| |
This leads to a segfault. Chandler already has a test case and should be
able to recommit with a fix soon.
llvm-svn: 306252
|
|
|
|
|
|
| |
few places. NFC
llvm-svn: 306204
|
|
|
|
|
|
|
| |
The single exit block allowed in runtime unrolling is guaranteed to be
the Latch's successor, so rename it as LatchExitBlock.
llvm-svn: 306105
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I want to use the same logic as LoopSimplify to form dedicated exits in
another pass (SimpleLoopUnswitch) so I wanted to factor it out here.
I also noticed that there is a pretty significantly more efficient way
to implement this than the way the code in LoopSimplify worked. We don't
need to actually retain the set of unique exit blocks, we can just
rewrite them as we find them and use only a set to deduplicate.
This did require changing one part of LoopSimplify to not re-use the
unique set of exits, but it only used it to check that there was
a single unique exit. That part of the code is about to walk the exiting
blocks anyways, so it seemed better to rewrite it to use those exiting
blocks to compute this property on-demand.
I also had to ditch a statistic, but it doesn't seem terribly valuable.
Differential Revision: https://reviews.llvm.org/D34049
llvm-svn: 306081
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(string) passed to them.
Summary:
This allows strlen to be moved out of the loop in case its argument is
not modified in the loop in LICM.
Reviewers: hfinkel, davide, sanjoy, dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34323
llvm-svn: 305641
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a fix for PR33292 that shows a case of extremely long compilation
of a single .c file with clang, with most time spent within SCEV.
We have a mechanism of limiting recursion depth for getAddExpr to avoid
long analysis in SCEV. However, there are calls from getAddExpr to getMulExpr
and back that do not propagate the info about depth. As result of this, a chain
getAddExpr -> ... .> getAddExpr -> getMulExpr -> getAddExpr -> ... -> getAddExpr
can be extremely long, with every segment of getAddExpr's being up to max depth long.
This leads either to long compilation or crash by stack overflow. We face this situation while
analyzing big SCEVs in the test of PR33292.
This patch applies the same limit on max expression depth for getAddExpr and getMulExpr.
Differential Revision: https://reviews.llvm.org/D33984
llvm-svn: 305463
|
|
|
|
|
|
| |
to the same target regardless of condition
llvm-svn: 305416
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D33847
llvm-svn: 305170
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D33737
llvm-svn: 305132
|
|
|
|
| |
llvm-svn: 305081
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
same basic block.
Summary:
This problem stems from the fact that instructions are allocated using new
in LLVM, i.e. there is no relationship that can be derived by just looking
at the pointer value.
This interface dispatches to appropriate dominance check given 2 instructions,
i.e. in case the instructions are in the same basic block, ordered basicblock
(with instruction numbering and caching) are used. Otherwise, dominator tree
is used.
This is a preparation patch for https://reviews.llvm.org/D32720
Reviewers: dberlin, hfinkel, davide
Subscribers: davide, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D33380
llvm-svn: 304764
|
|
|
|
|
|
|
|
| |
This was rL304226, reverted in 304228 due to a clang assertion failure
on the build bots. That problem should have been addressed by clang
commit rL304470.
llvm-svn: 304488
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
iterating SmallPtrSet
Summary:
Sort OpsToRename before iterating to make iteration order deterministic.
Thanks to Daniel Berlin for the sorting logic.
Reviewers: dberlin, RKSimon, efriedma, davide
Reviewed By: dberlin, davide
Subscribers: sanjoy, davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D33265
llvm-svn: 304447
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does an inline expansion of memcmp.
It changes the memcmp library call into an inline expansion when the size is
known at compile time and is under a target specified threshold.
This expansion is implemented in CodeGenPrepare and expands into straight line
code. The target specifies a maximum load size and the expansion works by using
this size to load the two sources, compare, and exit early if a difference is
found. It also has a special case when the memcmp result is used in a compare
to zero equality.
Differential Revision: https://reviews.llvm.org/D28637
llvm-svn: 304313
|
|
|
|
|
|
|
|
| |
region.
Differential Revision: http://reviews.llvm.org/D33618
llvm-svn: 304245
|
|
|
|
|
|
| |
At least one build bot is complaining. Will investigate after lunch.
llvm-svn: 304228
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In rL302576, DISubprograms gained the constraint that a !dbg attachments to functions must
have a 1:1 mapping to DISubprograms. As part of that change, the function cloning support
was adjusted to attempt to enforce this invariant during cloning. However, there
were several problems with the implementation. Part of these were fixed in rL304079.
However, there was a more fundamental problem with these changes, namely that it
bypasses the matadata value map, causing the cloned metadata to be a mix of metadata
pointing to the new suprogram (where manual code was added to fix those up) and the
old suprogram (where this was not the case). This mismatch could cause a number of
different assertion failures in the DWARF emitter. Some of these are given at
https://github.com/JuliaLang/julia/issues/22069, but some others have been observed
as well. Attempt to rectify this by partially reverting the manual DI metadata fixup,
and instead using the standard value map approach. To retain the desired semantics
of not duplicating the compilation unit and inlined subprograms, explicitly freeze
these in the value map.
Reviewers: dblaikie, aprantl, GorNishanov, echristo
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33655
llvm-svn: 304226
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
I believe https://reviews.llvm.org/rL302576 introduced two bugs:
1) it produces duplicate distinct variables for every: dbg.value describing the same variable.
To fix the problme I switched form getDistinct() to get() in DebugLoc.cpp: auto reparentVar = [&](DILocalVariable *Var) {
return DILocalVariable::getDistinct(
2) It passes NewFunction plain name as a linkagename parameter to Subprogram constructor. Breaks assert in:
|| DeclLinkageName.empty()) || LinkageName == DeclLinkageName) && "decl has a linkage name and it is different"' failed.
#9 0x00007f5010261b75 llvm::DwarfUnit::applySubprogramDefinitionAttributes(llvm::DISubprogram const*, llvm::DIE&) /home/gor/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp:1173:3
#
(Edit: reproducer added)
Here how https://reviews.llvm.org/rL302576 broke coroutine debug info.
Coroutine body of the original function is split into several parts by cloning and removing unneeded code.
All parts describe the original function and variables present in the original function.
For a simple case, prior to Split, original function has these two blocks:
```
PostSpill: ; preds = %AllocaSpillBB
call void @llvm.dbg.value(metadata i32 %x, i64 0, metadata !14, metadata !15), !dbg !13
store i32 %x, i32* %x.addr, align 4
...
and
sw.epilog: ; preds = %sw.bb
%x.addr.reload.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0, i32 4, !dbg !20
%4 = load i32, i32* %x.addr.reload.addr, align 4, !dbg !20
call void @llvm.dbg.value(metadata i32 %4, i64 0, metadata !14, metadata !15), !dbg !13
!14 = !DILocalVariable(name: "x", arg: 1, scope: !6, file: !7, line: 55, type: !11)
```
Note that in two blocks different expression represent the same original user variable X.
Before rL302576, for every cloned function there was exactly one cloned DILocalVariable(name: "x" as in:
```
define i8* @f(i32 %x) #0 !dbg !6 {
...
!6 = distinct !DISubprogram(name: "f", scope: !7, file: !7, line: 55, type: !8, isLocal: false, isDefinition: true, scopeLine: 55, flags: DIFlagPrototyped,
...
!14 = !DILocalVariable(name: "x", arg: 1, scope: !6, file: !7, line: 55, type: !11)
define internal fastcc void @f.resume(%f.Frame* %FramePtr) #0 !dbg !25 {
...
!25 = distinct !DISubprogram(name: "f", scope: !7, file: !7, line: 55, type: !8, isLocal: false, isDefinition: true, scopeLine: 55, flags: DIFlagPrototyped, isOptimized: false, unit: !0, variables: !2)
!28 = !DILocalVariable(name: "x", arg: 1, scope: !25, file: !7, line: 55, type: !11)
```
After rL302576, for every cloned function there were as many DILocalVariable(name: "x" as there were "call void @llvm.dbg.value" for that variable.
This was causing asserts in VerifyDebugInfo and AssemblyPrinter.
Example:
```
!27 = distinct !DISubprogram(name: "f", linkageName: "f.resume", scope: !7, file: !7, line: 55, type: !8, isLocal: false, isDefinition: true, scopeLine: 55,
!29 = distinct !DILocalVariable(name: "x", arg: 1, scope: !27, file: !7, line: 55, type: !11)
!39 = distinct !DILocalVariable(name: "x", arg: 1, scope: !27, file: !7, line: 55, type: !11)
!41 = distinct !DILocalVariable(name: "x", arg: 1, scope: !27, file: !7, line: 55, type: !11)
```
Second problem:
Prior to rL302576, all clones were described by DISubprogram referring to original function.
```
define i8* @f(i32 %x) #0 !dbg !6 {
...
!6 = distinct !DISubprogram(name: "f", scope: !7, file: !7, line: 55, type: !8, isLocal: false, isDefinition: true, scopeLine: 55, flags: DIFlagPrototyped,
define internal fastcc void @f.resume(%f.Frame* %FramePtr) #0 !dbg !25 {
...
!25 = distinct !DISubprogram(name: "f", scope: !7, file: !7, line: 55, type: !8, isLocal: false, isDefinition: true, scopeLine: 55, flags: DIFlagPrototyped,
```
After rL302576, DISubprogram for clones is of two minds, plain name refers to the original name, linkageName refers to plain name of the clone.
```
!27 = distinct !DISubprogram(name: "f", linkageName: "f.resume", scope: !7, file: !7, line: 55, type: !8, isLocal: false, isDefinition: true, scopeLine: 55,
```
I think the assumption in AsmPrinter is that both name and linkageName should refer to the same entity. It asserts here when they are not:
```
|| DeclLinkageName.empty()) || LinkageName == DeclLinkageName) && "decl has a linkage name and it is different"' failed.
#9 0x00007f5010261b75 llvm::DwarfUnit::applySubprogramDefinitionAttributes(llvm::DISubprogram const*, llvm::DIE&) /home/gor/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp:1173:3
```
After this fix, behavior (with respect to coroutines) reverts to exactly as it was before and therefore making them debuggable again, or even more importantly, compilable, with "-g"
Reviewers: dblaikie, echristo, aprantl
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33614
llvm-svn: 304079
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch provides an initial prototype for a pass that sinks instructions based on GVN information, similar to GVNHoist. It is not yet ready for commiting but I've uploaded it to gather some initial thoughts.
This pass attempts to sink instructions into successors, reducing static
instruction count and enabling if-conversion.
We use a variant of global value numbering to decide what can be sunk.
Consider:
[ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ]
[ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ]
\ /
[ %e = phi i32 %a2, %c2 ]
[ add i32 %e, 4 ]
GVN would number %a1 and %c1 differently because they compute different
results - the VN of an instruction is a function of its opcode and the
transitive closure of its operands. This is the key property for hoisting
and CSE.
What we want when sinking however is for a numbering that is a function of
the *uses* of an instruction, which allows us to answer the question "if I
replace %a1 with %c1, will it contribute in an equivalent way to all
successive instructions?". The (new) PostValueTable class in GVN provides this
mapping.
This pass has some shown really impressive improvements especially for codesize already on internal benchmarks, so I have high hopes it can replace all the sinking logic in SimplifyCFG.
Differential revision: https://reviews.llvm.org/D24805
llvm-svn: 303850
|
|
|
|
|
|
|
|
|
|
| |
version that returns the KnownBits object.
This continues the changes started when computeSignBit was replaced with this new version of computeKnowBits.
Differential Revision: https://reviews.llvm.org/D33431
llvm-svn: 303773
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Before this change, AttributeLists stored a pair of index and
AttributeSet. This is memory efficient if most arguments do not have
attributes. However, it requires doing a search over the pairs to test
an argument or function attribute. Profiling shows that this loop was
0.76% of the time in 'opt -O2' of sqlite3.c, because LLVM constantly
tests values for nullability.
This was worth about 2.5% of mid-level optimization cycles on the
sqlite3 amalgamation. Here are the full perf results:
https://reviews.llvm.org/P7995
Here are just the before and after cycle counts:
```
$ perf stat -r 5 ./opt_before -O2 sqlite3.bc -o /dev/null
13,274,181,184 cycles # 3.047 GHz ( +- 0.28% )
$ perf stat -r 5 ./opt_after -O2 sqlite3.bc -o /dev/null
12,906,927,263 cycles # 3.043 GHz ( +- 0.51% )
```
This patch *does not* change the indices used to query attributes, as
requested by reviewers. Tracking whether an index is usable for array
indexing is a huge pain that affects many of the internal APIs, so it
would be good to come back later and do a cleanup to remove this
internal adjustment.
Reviewers: pete, chandlerc
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D32819
llvm-svn: 303654
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch builds over https://reviews.llvm.org/rL303349 and replaces
the use of the condition only if it is safe to do so.
We should not blindly RAUW the condition if experimental.guard or assume
is a use of that
condition. This is because LVI may have used the guard/assume to
identify the
value of the condition, and RUAWing will fold the guard/assume and uses
before the guards/assumes.
Reviewers: sanjoy, reames, trentxintong, mkazantsev
Reviewed by: sanjoy, reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33257
llvm-svn: 303633
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
With instrumentation profiling, when updating the VP metadata after
an inline, VP metadata on the inlined copy was inadvertantly having
all counts zeroed out. This was causing indirect calls from code inlined
during the call step to be marked as cold in the ThinLTO summaries and
not imported.
The CallerBFI needs to be passed down so that the CallSiteCount can be
computed from the profile summary info. With Sample PGO this was working
since the count is extracted from the branch weight metadata on the
call being inlined (even before we stopped looking at metadata for
non-sample PGO in r302844 this largely wasn't working for instrumentation
PGO since only promoted indirect calls would be getting inlined and have
the metadata).
Added an instrumentation PGO test and renamed the sample PGO test.
Reviewers: danielcdh, eraman
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D33389
llvm-svn: 303574
|
|
|
|
|
|
| |
reference. NFCI
llvm-svn: 303523
|
|
|
|
|
|
|
|
| |
This reverts commit 143d7445b5dfa2f6d6c45bdbe0433d9fc531be21.
Build breaking
llvm-svn: 303496
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This allows pthread_self to be pulled out of a loop by LICM.
Reviewers: hfinkel, arsenm, davide
Reviewed By: davide
Subscribers: davide, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D32782
llvm-svn: 303495
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Refactor the strlen optimization code to work for both strlen and wcslen.
This especially helps with programs in the wild where people pass
L"string"s to const std::wstring& function parameters and the wstring
constructor gets inlined.
This also fixes a lingerind API problem/bug in getConstantStringInfo()
where zeroinitializers would always give you an empty string (without a
length) back regardless of the actual length of the initializer which
did not work well in the TrimAtNul==false causing the PR mentioned
below.
Note that the fixed getConstantStringInfo() needed fixes to SelectionDAG
memcpy lowering and may lead to some cases for out-of-bounds
zeroinitializer accesses not getting optimized anymore. So some code
with UB may produce out of bound memory reads now instead of just
producing zeros.
The refactoring "accidentally" fixes http://llvm.org/PR32124
Differential Revision: https://reviews.llvm.org/D32839
llvm-svn: 303461
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Implements PR889
Removing the virtual table pointer from Value saves 1% of RSS when doing
LTO of llc on Linux. The impact on time was positive, but too noisy to
conclusively say that performance improved. Here is a link to the
spreadsheet with the original data:
https://docs.google.com/spreadsheets/d/1F4FHir0qYnV0MEp2sYYp_BuvnJgWlWPhWOwZ6LbW7W4/edit?usp=sharing
This change makes it invalid to directly delete a Value, User, or
Instruction pointer. Instead, such code can be rewritten to a null check
and a call Value::deleteValue(). Value objects tend to have their
lifetimes managed through iplist, so for the most part, this isn't a big
deal. However, there are some places where LLVM deletes values, and
those places had to be migrated to deleteValue. I have also created
llvm::unique_value, which has a custom deleter, so it can be used in
place of std::unique_ptr<Value>.
I had to add the "DerivedUser" Deleter escape hatch for MemorySSA, which
derives from User outside of lib/IR. Code in IR cannot include MemorySSA
headers or call the MemoryAccess object destructors without introducing
a circular dependency, so we need some level of indirection.
Unfortunately, no class derived from User may have any virtual methods,
because adding a virtual method would break User::getHungOffOperands(),
which assumes that it can find the use list immediately prior to the
User object. I've added a static_assert to the appropriate OperandTraits
templates to help people avoid this trap.
Reviewers: chandlerc, mehdi_amini, pete, dberlin, george.burgess.iv
Reviewed By: chandlerc
Subscribers: krytarowski, eraman, george.burgess.iv, mzolotukhin, Prazek, nlewycky, hans, inglorion, pcc, tejohnson, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D31261
llvm-svn: 303362
|
|
|
|
|
|
|
|
|
|
|
| |
There's no need (& a bit incorrect) to mask off the high bits of the
register reference when describing a simple bool value.
Reviewers: aprantl
Differential Revision: https://reviews.llvm.org/D31062
llvm-svn: 303117
|
|
|
|
|
|
|
|
|
|
|
|
| |
possible
This patch adds min/max population count, leading/trailing zero/one bit counting methods.
The min methods return answers based on bits that are known without considering unknown bits. The max methods give answers taking into account the largest count that unknown bits could give.
Differential Revision: https://reviews.llvm.org/D32931
llvm-svn: 302925
|
|
|
|
|
|
| |
Conversion rules allow automatic casting of nullptr to any pointer type.
llvm-svn: 302780
|
|
|
|
|
|
|
|
|
| |
This pass uses a new target hook to decide whether or not to expand a particular
intrinsic to the shuffevector sequence.
Differential Revision: https://reviews.llvm.org/D32245
llvm-svn: 302631
|
|
|
|
|
|
|
|
|
|
| |
This change is required because the notion of count is different for
sample profiling and getProfileCount will need to determine the
underlying profile type.
Differential revision: https://reviews.llvm.org/D33012
llvm-svn: 302597
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This fixes the immediate crash caused by introducing an incorrect inttoptr
before attempting the conversion. There may still be a legality
check missing somewhere earlier for non-integral pointers, but this change
seems necessary in any case.
Reviewers: sanjoy, dberlin
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32623
llvm-svn: 302587
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As recently discussed on llvm-dev [1], this patch makes it illegal for
two Functions to point to the same DISubprogram and updates
FunctionCloner to also clone the debug info of a function to conform
to the new requirement. To simplify the implementation it also factors
out the creation of inlineAt locations from the Inliner into a
general-purpose utility in DILocation.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
<rdar://problem/31926379>
Differential Revision: https://reviews.llvm.org/D32975
This reapplies r302469 with a fix for a bot failure (reparentDebugInfo
now checks for the case the orig and new function are identical).
llvm-svn: 302576
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Since I will post patch with some changes to
replaceDominatedUsesWith, it would be good to avoid
duplicating code again.
Reviewers: davide, dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32798
llvm-svn: 302575
|
|
|
|
|
|
|
|
|
| |
Use variadic templates instead of relying on <cstdarg> + sentinel.
This enforces better type checking and makes code more readable.
Differential Revision: https://reviews.llvm.org/D32541
llvm-svn: 302571
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
DISubprogram"
This caused PR32977.
Original commit message:
> Make it illegal for two Functions to point to the same DISubprogram
>
> As recently discussed on llvm-dev [1], this patch makes it illegal for
> two Functions to point to the same DISubprogram and updates
> FunctionCloner to also clone the debug info of a function to conform
> to the new requirement. To simplify the implementation it also factors
> out the creation of inlineAt locations from the Inliner into a
> general-purpose utility in DILocation.
>
> [1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
> <rdar://problem/31926379>
>
> Differential Revision: https://reviews.llvm.org/D32975
llvm-svn: 302533
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- This change allows targets to opt-in to using them instead of the log2
shufflevector algorithm.
- The SLP and Loop vectorizers have the common code to do shuffle reductions
factored out into LoopUtils, and now have a unified interface for generating
reductions regardless of the preference of the target. LoopUtils now uses TTI
to determine what kind of reductions the target wants to handle.
- For CodeGen, basic legalization support is added.
Differential Revision: https://reviews.llvm.org/D30086
llvm-svn: 302514
|