| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
| |
We're gonna skip them anyway, so there's no point in inserting them
in the first place.
llvm-svn: 300452
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch is a generalization of the improvement introduced in rL296898.
Previously, we were able to peel one iteration of a loop to get rid of a Phi that becomes
an invariant on the 2nd iteration. In more general case, if a Phi becomes invariant after
N iterations, we can peel N times and turn it into invariant.
In order to do this, we for every Phi in loop's header we define the Invariant Depth value
which is calculated as follows:
Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
If %y is a loop invariant, then Depth(%x) = 1.
If %y is a Phi from the loop header, Depth(%x) = Depth(%y) + 1.
Otherwise, Depth(%x) is infinite.
Notice that if we peel a loop, all Phis with Depth = 1 become invariants,
and all other Phis with finite depth decrease the depth by 1.
Thus, peeling N first iterations allows us to turn all Phis with Depth <= N
into invariants.
Reviewers: reames, apilipenko, mkuper, skatkov, anna, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31613
llvm-svn: 300446
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When peeling loops basing on phis becoming invariants, we make a wrong loop size check.
UP.Threshold should be compared against the total numbers of instructions after the transformation,
which is equal to 2 * LoopSize in case of peeling one iteration.
We should also check that the maximum allowed number of peeled iterations is not zero.
Reviewers: sanjoy, anna, reames, mkuper
Reviewed By: mkuper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31753
llvm-svn: 300441
|
|
|
|
| |
llvm-svn: 300433
|
|
|
|
|
|
| |
Use a SmallSetVector instead.
llvm-svn: 300431
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add hasParamAttribute() and use it instead of hasAttribute(ArgNo+1,
Kind) everywhere.
The fact that the AttributeList index for an argument is ArgNo+1 should
be a hidden implementation detail.
NFC
llvm-svn: 300272
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For LCSSA purposes, loop BBs not dominating any of the exits aren't
interesting, as none of the values defined in these blocks can be
used outside the loop.
The way the code computed this information was by comparing each
BB of the loop with each of the exit blocks and ask the dominator tree
about their dominance relation. This is slow.
A more efficient way, implemented here, is that of starting from the
exit blocks and walking the dom upwards until we hit an header. By
transitivity, all the blocks we encounter in our path dominate an exit.
For the testcase provided in PR31851, this reduces compile time on
`opt -O2` by ~25%, going from 1m47s to 1m22s.
Thanks to Dan/MichaelZ for discussions/suggesting the approach/review.
Differential Revision: https://reviews.llvm.org/D31843
llvm-svn: 300255
|
|
|
|
|
|
|
| |
We could otherwise add BBs not belonging to a loop in `formLCSSA`
and later crash when trying to iterate the loop blocks.
llvm-svn: 300244
|
|
|
|
| |
llvm-svn: 300243
|
|
|
|
| |
llvm-svn: 300242
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In first order recurrences where phi's are used outside the loop,
we should generate an additional vector.extract of the second last element from
the vectorized phi update.
This is because we require the phi itself (which is the value at the second last
iteration of the vector loop) and not the phi's update within the loop.
Also fix the code gen when we just unroll, but don't vectorize.
Fixes PR32396.
Reviewers: mssimpso, mkuper, anemet
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D31979
llvm-svn: 300238
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This seems like a much more natural API, based on Derek Schuff's
comments on r300015. It further hides the implementation detail of
AttributeList that function attributes come last and appear at index
~0U, which is easy for the user to screw up. git diff says it saves code
as well: 97 insertions(+), 137 deletions(-)
This also makes it easier to change the implementation, which I want to
do next.
llvm-svn: 300153
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
and to expose a handle to represent the actual case rather than having
the iterator return a reference to itself.
All of this allows the iterator to be used with common STL facilities,
standard algorithms, etc.
Doing this exposed some missing facilities in the iterator facade that
I've fixed and required some work to the actual iterator to fully
support the necessary API.
Differential Revision: https://reviews.llvm.org/D31548
llvm-svn: 300032
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
For now, it just wraps AttributeSetNode*. Eventually, it will hold
AvailableAttrs as an inline bitset, and adding and removing enum
attributes will be super cheap.
This sinks AttributeSetNode back down to lib/IR/AttributeImpl.h.
Reviewers: pete, chandlerc
Subscribers: llvm-commits, jfb
Differential Revision: https://reviews.llvm.org/D31940
llvm-svn: 300014
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the vectorization of first order recurrence, we vectorize such
that the last element in the vector will be the one extracted to pass into the
scalar remainder loop. However, this is not true when there is a phi (other
than the primary induction variable) is used outside the loop.
In such a case, we need the value from the second last iteration (i.e.
the phi value), not the last iteration (which would be the phi update).
I've added a test case for this. Also see PR32396.
A follow up patch would generate the correct code gen for such cases,
and turn this vectorization on.
Differential Revision: https://reviews.llvm.org/D31910
Reviewers: mssimpso
llvm-svn: 299985
|
|
|
|
|
|
|
|
| |
Analysis, it has Analysis passes, and once NewGVN is made an Analysis,
this removes the cross dependency from Analysis to Transform/Utils.
NFC.
llvm-svn: 299980
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, pass AddDiscriminators always avoided to assign
discriminators to intrinsic calls. This was done mainly for two reasons:
1) We wanted to minimize the number of based discriminators used.
2) We wanted to avoid non-deterministic discriminator assignment for
different debug levels.
Unfortunately, that approach was problematic for MemIntrinsic calls.
MemIntrinsic calls can be split by SROA into loads and stores, and each new
load/store instruction would obtain the debug location from the original
intrinsic call.
If we don't assign a discriminator to MemIntrinsic calls, then we cannot
correctly set the discriminator for the newly created loads and stores.
This may have a negative impact on the basic block weight computation
performed by the SampleLoader.
This patch fixes the issue by letting MemIntrinsic calls have a discriminator.
Differential Revision: https://reviews.llvm.org/D31900
llvm-svn: 299972
|
|
|
|
|
|
|
|
|
|
|
| |
templates.
From a user prospective, it forces the use of an annoying nullptr to mark the end of the vararg, and there's not type checking on the arguments.
The variadic template is an obvious solution to both issues.
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299949
|
|
|
|
|
|
|
| |
This reverts commit r299925 because it broke the buildbots. See e.g.
http://lab.llvm.org:8011/builders/clang-cmake-armv7-a15/builds/6008
llvm-svn: 299928
|
|
|
|
|
|
|
|
|
|
|
|
| |
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
llvm-svn: 299925
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Fix coverity cid 1374240
Reviewers: dberlin
Reviewed By: dberlin
Differential Revision: https://reviews.llvm.org/D31928
llvm-svn: 299924
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This re-lands r299875.
I introduced a bug in Clang code responsible for replacing K&R, no
prototype declarations with a real function definition with a prototype.
The bug was here:
// Collect any return attributes from the call.
- if (oldAttrs.hasAttributes(llvm::AttributeList::ReturnIndex))
- newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(),
- oldAttrs.getRetAttributes()));
+ newAttrs.push_back(oldAttrs.getRetAttributes());
Previously getRetAttributes() carried AttributeList::ReturnIndex in its
AttributeList. Now that we return the AttributeSetNode* directly, it no
longer carries that index, and we call this overload with a single node:
AttributeList::get(LLVMContext&, ArrayRef<AttributeSetNode*>)
That aborted with an assertion on x86_32 targets. I added an explicit
triple to the test and added CHECKs to help find issues like this in the
future sooner.
llvm-svn: 299899
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D31818
llvm-svn: 299893
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
LLVM makes several assumptions about address space 0. However,
alloca is presently constrained to always return this address space.
There's no real way to avoid using alloca, so without this
there is no way to opt out of these assumptions.
The problematic assumptions include:
- That the pointer size used for the stack is the same size as
the code size pointer, which is also the maximum sized pointer.
- That 0 is an invalid, non-dereferencable pointer value.
These are problems for AMDGPU because alloca is used to
implement the private address space, which uses a 32-bit
index as the pointer value. Other pointers are 64-bit
and behave more like LLVM's notion of generic address
space. By changing the address space used for allocas,
we can change our generic pointer type to be LLVM's generic
pointer type which does have similar properties.
llvm-svn: 299888
|
|
|
|
|
|
| |
This reverts commit r299697, which caused a big increase in object file size.
llvm-svn: 299879
|
|
|
|
|
|
|
| |
This reverts r299875. A Linux bot came back with a test failure:
http://bb.pgr.jp/builders/test-clang-i686-linux-RA/builds/741/steps/test_clang/logs/Clang%20%3A%3A%20CodeGen__2006-05-19-SingleEltReturn.c
llvm-svn: 299878
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
AttributeList::get(Fn|Ret|Param)Attributes no longer creates a temporary
AttributeList just to hide the AttributeSetNode type.
I've also added a factory method to create AttributeLists from a
parallel array of AttributeSetNodes. I think this simplifies
construction of AttributeLists when rewriting function prototypes.
Previously we would test if a particular index had attributes, and
conditionally add a temporary attribute list to a vector. Now the
attribute set vector is parallel to the argument vector already that
these passes already construct.
My long term vision is to wrap AttributeSetNode* inside an AttributeSet
type that holds the enum attributes, but that will come in a follow up
change.
I haven't done any performance measurements for this change because
profiling hasn't shown that any of the affected code is hot.
Reviewers: pete, chandlerc, sanjoy, hfinkel
Reviewed By: pete
Subscribers: jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31198
llvm-svn: 299875
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
While we don't want them aliasing with other pointers, there seems to
be no point in not having them clobber must-aliased'd pointers.
If some day, we split the aliasing and ordering chains, we'd make this
not aliasing but an ordering barrier (IE it doesn't affect it's
memory, but we can't hoist it above it).
Reviewers: hfinkel, george.burgess.iv
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31865
llvm-svn: 299865
|
|
|
|
|
|
| |
No caller has been passing it for a long time.
llvm-svn: 299827
|
|
|
|
|
|
|
|
|
|
| |
isUseTriviallyOptimizableToLiveOnEntry
In isUseTriviallyOptimizableToLiveOnEntry, pointsToConstantMemory needs to be
called on the load's pointer operand, not on the result of the load (which
might not even be a pointer).
llvm-svn: 299823
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
getModRefInfo is meant to answer the question "what impact does this
instruction have on a given memory location" (not even another
instruction).
Long debate on this on IRC comes to the conclusion the answer should be "nothing special".
That is, a noalias volatile store does not affect a memory location
just by being volatile. Note: DSE and GVN and memdep currently
believe this, because memdep just goes behind AA's back after it says
"modref" right now.
see line 635 of memdep. Prior to this patch we would get modref there, then check aliasing,
and if it said noalias, we would continue.
getModRefInfo *already* has this same AA check, it just wasn't being used because volatile was
lumped in with ordering.
(I am separately testing whether this code in memdep is now dead except for the invariant load case)
Reviewers: jyknight, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31726
llvm-svn: 299741
|
|
|
|
|
|
| |
This reverts commit r299699, the examples needs to be updated.
llvm-svn: 299702
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299699
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use a combination of !associated, comdat, @llvm.compiler.used and
custom sections to allow dead stripping of globals and their asan
metadata. Sometimes.
Currently this works on LLD, which supports SHF_LINK_ORDER with
sh_link pointing to the associated section.
This also works on BFD, which seems to treat comdats as
all-or-nothing with respect to linker GC. There is a weird quirk
where the "first" global in each link is never GC-ed because of the
section symbols.
At this moment it does not work on Gold (as in the globals are never
stripped).
This is a re-land of r298158 rebased on D31358. This time,
asan.module_ctor is put in a comdat as well to avoid quadratic
behavior in Gold.
llvm-svn: 299697
|
|
|
|
|
|
|
|
|
|
|
| |
Create the constructor in the module pass.
This in needed for the GC-friendly globals change, where the constructor can be
put in a comdat in some cases, but we don't know about that in the function
pass.
This is a rebase of r298731 which was reverted due to a false alarm.
llvm-svn: 299695
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Remove all the caching the clobber walker does, and that the
caching walker does. With the patch to enable storing clobbering
access results for stores, i can find no improvement with the cache
turned on (and a number of degradations, both time and memory, from
the cost of caching. For a large program i have, we do millions of
lookups and inserts with zero hits).
I haven't tried to rename or simplify the walker otherwise yet.
(Appreciate some perf testing on this past my own testing)
Reviewers: george.burgess.iv, davide
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31576
llvm-svn: 299578
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
stores with some fixes.
Summary:
This enables us to cache the clobbering access for stores, despite the
fact that we can't rewrite the use-def chains themselves.
Early testing shows that, after this change, for larger testcases, it
will be a significant net positive (memory and time) to remove the
walker caching.
Reviewers: george.burgess.iv, davide
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31567
llvm-svn: 299486
|
|
|
|
|
|
| |
This reverts revision r299322.
llvm-svn: 299485
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Disable bypassing if one of the operands looks like a hash value. Slow
division often occurs in hashtable implementations and fast division is
never taken there because a hash value is extremely unlikely to have
enough upper bits set to zero.
A value is considered to be hash-like if it is produced by
1) XOR operation
2) Multiplication by a constant wider than the shorter type
3) PHI node with all incoming values being hash-like
Differential Revision: https://reviews.llvm.org/D28200
llvm-svn: 299329
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This enables us to cache the clobbering access for stores, despite the
fact that we can't rewrite the use-def chains themselves.
Early testing shows that, after this change, for larger testcases, it will be a significant net positive (memory and time) to remove the walker caching.
Reviewers: george.burgess.iv, davide
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31567
llvm-svn: 299322
|
|
|
|
| |
llvm-svn: 299297
|
|
|
|
| |
llvm-svn: 299295
|
|
|
|
| |
llvm-svn: 299294
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A common way to implement nearbyint is by fiddling with the floating
point environment and calling rint. This is used at least by the BSD
libm and musl. As such, canonicalizing the latter to the former will
create infinite loops for libm and generally pessimize performance, at
least when the generic C versions are used.
This change preserves the rint in the libcall translation and also
handles the domain truncation logic, so that rint with float argument
will be reduced to rintf etc.
llvm-svn: 299247
|
|
|
|
|
|
|
|
|
|
| |
operands are non-negative
Since there is no sdiv in SCEV, an 'udiv' is a better canonical form than an 'sdiv' as the user of induction variable
Differential Revision: https://reviews.llvm.org/D31488
llvm-svn: 299118
|
|
|
|
|
|
|
|
| |
Speculative revert. Some libfuzzer tests are affected.
This reverts commit r298731.
llvm-svn: 298890
|
|
|
|
|
|
|
|
|
| |
References in cloned blocks must be remapped prior to dominator
calculation.
Differential Revision: https://reviews.llvm.org/D31281
llvm-svn: 298811
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The first variant contains all current transformations except
transforming switches into lookup tables. The second variant
contains all current transformations.
The switch-to-lookup-table conversion results in code that is more
difficult to analyze and optimize by other passes. Most importantly,
it can inhibit Dead Code Elimination. As such it is often beneficial to
only apply this transformation very late. A common example is inlining,
which can often result in range restrictions for the switch expression.
Changes in execution time according to LNT:
SingleSource/Benchmarks/Misc/fp-convert +3.03%
MultiSource/Benchmarks/ASC_Sequoia/CrystalMk/CrystalMk -11.20%
MultiSource/Benchmarks/Olden/perimeter/perimeter -10.43%
and a couple of smaller changes. For perimeter it also results 2.6%
a smaller binary.
Differential Revision: https://reviews.llvm.org/D30333
llvm-svn: 298799
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This moves it to the iterator facade utilities giving it full random
access semantics, etc. It can also now be used with standard algorithms
like std::all_of and std::any_of and range adaptors like llvm::reverse.
Also make the semantics of iterating match what every other iterator
uses and forbid decrementing past the begin iterator. This was used as
a hacky way to work around iterator invalidation. However, every
instance trying to do this failed to actually avoid touching invalid
iterators despite the clear documentation that the removed and all
subsequent iterators become invalid including the end iterator. So I've
added a return of the next iterator to removeCase and rewritten the
loops that were doing this to correctly follow the iterator pattern of
either incremneting or removing and assigning fresh values to the
iterator and the end.
In one case we were trying to go backwards to make this cleaner but it
doesn't actually work. I've made that code match the code we use
everywhere else to remove cases as we iterate. This changes the order of
cases in one test output and I moved that test to CHECK-DAG so it
wouldn't care -- the order isn't semantically meaningful anyways.
llvm-svn: 298791
|
|
|
|
|
|
|
|
|
| |
Create the constructor in the module pass.
This in needed for the GC-friendly globals change, where the constructor can be
put in a comdat in some cases, but we don't know about that in the function
pass.
llvm-svn: 298731
|