| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
| |
epilogues."
This reverts commit r280901.
This caused a bunch of failures, reverting it until I investigate them.
llvm-svn: 280905
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When cloning blocks for prologue/epilogue we need to replicate the loop
structure from the original loop. It wasn't a problem for the innermost
loops, but it led to an incorrect loop info when we unrolled a loop with
a child loop - in this case created prologue-loop had a child loop, but
loop info didn't reflect that.
This fixes PR28888.
Reviewers: chandlerc, sanjoy, hfinkel
Subscribers: llvm-commits, silvas
Differential Revision: https://reviews.llvm.org/D24203
llvm-svn: 280901
|
|
|
|
|
|
|
|
|
|
| |
Instruction::andIRFlags.
The two functions are functionally equivalent.
Differential Revision: https://reviews.llvm.org/D22830
llvm-svn: 280884
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can't create metadata-valued PHIs; don't try to do so when sinking.
I created a test case for this using the @llvm.type.test intrinsic, because it
takes a metadata parameter and does not have severe side effects (thus
SimplifyCFG is willing to otherwise sink it).
Previously, running the test case would crash with:
Invalid use of metadata!
%.sink = select i1 %flag, metadata <...>, metadata <0x4e45dc0>
LLVM ERROR: Broken function found, compilation aborted!
llvm-svn: 280866
|
|
|
|
|
|
| |
In failure cases it's not guaranteed that the PHI we're inspecting is actually in the successor block! In this case we need to bail out early, and never query getIncomingValueForBlock() as that will cause an assert.
llvm-svn: 280794
|
|
|
|
|
|
|
|
| |
I should have realised this the first time around, but if we're avoiding sinking stores where the operands come from allocas so they don't create selects, we also have to do the same for loads because SROA will be just as defective looking at loads of selected addresses as stores.
Fixes PR30188 (again).
llvm-svn: 280792
|
|
|
|
|
|
|
|
| |
PR30292 showed a case where our PHI checking wasn't correct. We were checking that all values were used by the same PHI before deciding to sink, but we weren't checking that the incoming values for that PHI were what we expected. As a result, we had to bail out after block splitting which caused us to never reach a steady state in SimplifyCFG.
Fixes PR30292.
llvm-svn: 280790
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: DominatorTreeAnalysis is always required by instsimplify.
Reviewers: danielcdh, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24173
llvm-svn: 280760
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The inliner may need to determine where a given funclet unwinds to,
and this determination may depend on other funclets throughout the
funclet tree. The code that performs this walk in getUnwindDestToken
memoizes results to avoid redundant computations. In the case that
a funclet's unwind destination is derived from its ancestor, there's
code to walk back down the tree from the ancestor updating the memo
map of its descendants to record the unwind destination. This change
fixes that code to account for the case that some descendant has a
different unwind destination, which can happen if that unwind dest
is a descendant of the EHPad being queried and thus didn't determine
its unwind destination.
Also update test inline-funclets.ll, which is supposed to cover such
scenarios, to include a case that fails an assertion without this fix
but passes with it.
Fixes PR29151.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24117
llvm-svn: 280610
|
|
|
|
|
|
|
|
| |
We're sinking stores, which is a good thing, but in the process creating selects for the store address operand, which SROA/Mem2Reg can't look through, which caused serious regressions.
The real fix is in SROA, which I'll be looking into.
llvm-svn: 280470
|
|
|
|
|
|
|
|
|
| |
r280432 | dehao | 2016-09-01 16:51:37 -0700 (Thu, 01 Sep 2016) | 9 lines
Explicitly require DominatorTreeAnalysis pass for instsimplify pass.
Summary: DominatorTreeAnalysis is always required by instsimplify.
llvm-svn: 280452
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: DominatorTreeAnalysis is always required by instsimplify.
Reviewers: davidxl, danielcdh
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24173
llvm-svn: 280432
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
replace uses in BB itself.
Summary: This is in preparation for LoopSink pass which calls replaceDominatedUsesWith to update after sinking.
Reviewers: chandlerc, davidxl, danielcdh
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24170
llvm-svn: 280427
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was a real restriction in the original version of SinkIfThenCodeToEnd. Now it's been rewritten, the restriction can be lifted.
As part of this, we handle a very common and useful case where one of the incoming branches is actually conditional. Consider:
if (a)
x(1);
else if (b)
x(2);
This produces the following CFG:
[if]
/ \
[x(1)] [if]
| | \
| | \
| [x(2)] |
\ | /
[ end ]
[end] has two unconditional predecessor arcs and one conditional. The conditional refers to the implicit empty 'else' arc. This same pattern can also be caused by an empty default block in a switch.
We can't sink the call to x() down to end because no call to x() happens on the third incoming arc (assume that x() has sideeffects for the sake of argument; if something is safe to speculate we could indeed sink nevertheless but this cannot happen in the general case and causes many extra selects).
We are now able to detect this case and split off the unconditional arcs to a common successor:
[if]
/ \
[x(1)] [if]
| | \
| | \
| [x(2)] |
\ / |
[sink.split] |
\ /
[ end ]
Now we can sink the call to x() into %sink.split. This can cause significant code simplification in many testcases.
llvm-svn: 280364
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
r279460 rewrote this function to be able to handle more than two incoming edges and took pains to ensure this didn't regress anything.
This time we change the logic for determining if an instruction should be sunk. Previously we used a single pass greedy algorithm - sink instructions until one requires more than one PHI node or we run out of instructions to sink.
This had the problem that sinking instructions that had non-identical but trivially the same operands needed extra logic so we sunk them aggressively. For example:
%a = load i32* %b %d = load i32* %b
%c = gep i32* %a, i32 0 %e = gep i32* %d, i32 1
Sinking %c and %e would naively require two PHI merges as %a != %d. But the loads are obviously equivalent (and maybe can't be hoisted because there is no common predecessor).
This is why we implemented the fairly complex function areValuesTriviallySame(), to look through trivial differences like this. However it's just not clever enough.
Instead, throw areValuesTriviallySame away, use pointer equality to check equivalence of operands and switch to a two-stage algorithm.
In the "scan" stage, we look at every sinkable instruction in isolation from end of block to front. If it's sinkable, we keep track of all operands that required PHI merging.
In the "sink" stage, we iteratively sink the last non-terminator in the source blocks. But when calculating how many PHIs are actually required to be inserted (to work out if we should stop or not) we remove any values that have already been sunk from the set of PHI-merges required, which allows us to be more aggressive.
This turns an algorithm with potentially recursive lookahead (looking through GEPs, casts, loads and any other instruction potentially not CSE'd) to two linear scans.
llvm-svn: 280351
|
|
|
|
|
|
|
|
| |
We iterate over the result from SafeToMergeTerminators, so make it a SmallSetVector instead of a SmallPtrSet.
Should fix stage3 convergence builds.
llvm-svn: 280342
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A very important case is not handled here: multiple arcs to a single block with a PHI. Consider:
a:
%1 = icmp %b, 1
br %1, label %c, label %e
c:
%2 = icmp %b, 2
br %2, label %d, label %e
d:
br %e
e:
phi [0, %a], [1, %c], [2, %d]
FoldValueComparisonIntoPredecessors will refuse to fold this, as it doesn't know how to deal with two arcs to a common destination with different PHI values. The answer is obvious - just split all conflicting arcs.
llvm-svn: 280338
|
|
|
|
|
|
|
|
| |
more cases"
This reverts commit r280218. This *also* causes buildbot errors. Sigh. Not a successful day all around!
llvm-svn: 280239
|
|
|
|
|
|
| |
This reverts commit r280216 - it caused buildbot failures.
llvm-svn: 280234
|
|
|
|
|
|
| |
This reverts commit r280217. r280216 caused buildbot failures - backing out the entire chain.
llvm-svn: 280233
|
|
|
|
|
|
| |
This reverts commit r280219. r280216 caused buildbot failures - backing out the entire chain.
llvm-svn: 280232
|
|
|
|
|
|
| |
This reverts commit r280228. r280216 caused buildbot failures - backing out the entire sequence.
llvm-svn: 280231
|
|
|
|
|
|
| |
We check that a sinking candidate is used by only one PHI node during our legality checks. However for instructions that are used by other sinking candidates our heuristic is less conservative. This can result in a candidate actually being illegal when we come to sink it because of how we sunk a predecessor. Do the used-by-only-one-PHI checks again during sinking to ensure we don't crash.
llvm-svn: 280228
|
|
|
|
|
|
|
|
| |
We're sinking stores, which is a good thing, but in the process creating selects for the store address operand, which SROA/Mem2Reg can't look through, which caused serious regressions.
The real fix is in SROA, which I'll be looking into.
llvm-svn: 280219
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A very important case is not handled here: multiple arcs to a single block with a PHI. Consider:
a:
%1 = icmp %b, 1
br %1, label %c, label %e
c:
%2 = icmp %b, 2
br %2, label %d, label %e
d:
br %e
e:
phi [0, %a], [1, %c], [2, %d]
FoldValueComparisonIntoPredecessors will refuse to fold this, as it doesn't know how to deal with two arcs to a common destination with different PHI values. The answer is obvious - just split all conflicting arcs.
llvm-svn: 280218
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was a real restriction in the original version of SinkIfThenCodeToEnd. Now it's been rewritten, the restriction can be lifted.
As part of this, we handle a very common and useful case where one of the incoming branches is actually conditional. Consider:
if (a)
x(1);
else if (b)
x(2);
This produces the following CFG:
[if]
/ \
[x(1)] [if]
| | \
| | \
| [x(2)] |
\ | /
[ end ]
[end] has two unconditional predecessor arcs and one conditional. The conditional refers to the implicit empty 'else' arc. This same pattern can also be caused by an empty default block in a switch.
We can't sink the call to x() down to end because no call to x() happens on the third incoming arc (assume that x() has sideeffects for the sake of argument; if something is safe to speculate we could indeed sink nevertheless but this cannot happen in the general case and causes many extra selects).
We are now able to detect this case and split off the unconditional arcs to a common successor:
[if]
/ \
[x(1)] [if]
| | \
| | \
| [x(2)] |
\ / |
[sink.split] |
\ /
[ end ]
Now we can sink the call to x() into %sink.split. This can cause significant code simplification in many testcases.
llvm-svn: 280217
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
r279460 rewrote this function to be able to handle more than two incoming edges and took pains to ensure this didn't regress anything.
This time we change the logic for determining if an instruction should be sunk. Previously we used a single pass greedy algorithm - sink instructions until one requires more than one PHI node or we run out of instructions to sink.
This had the problem that sinking instructions that had non-identical but trivially the same operands needed extra logic so we sunk them aggressively. For example:
%a = load i32* %b %d = load i32* %b
%c = gep i32* %a, i32 0 %e = gep i32* %d, i32 1
Sinking %c and %e would naively require two PHI merges as %a != %d. But the loads are obviously equivalent (and maybe can't be hoisted because there is no common predecessor).
This is why we implemented the fairly complex function areValuesTriviallySame(), to look through trivial differences like this. However it's just not clever enough.
Instead, throw areValuesTriviallySame away, use pointer equality to check equivalence of operands and switch to a two-stage algorithm.
In the "scan" stage, we look at every sinkable instruction in isolation from end of block to front. If it's sinkable, we keep track of all operands that required PHI merging.
In the "sink" stage, we iteratively sink the last non-terminator in the source blocks. But when calculating how many PHIs are actually required to be inserted (to work out if we should stop or not) we remove any values that have already been sunk from the set of PHI-merges required, which allows us to be more aggressive.
This turns an algorithm with potentially recursive lookahead (looking through GEPs, casts, loads and any other instruction potentially not CSE'd) to two linear scans.
llvm-svn: 280216
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was deliberately disabled during my rewrite of SinkIfThenToEnd to keep behaviour
at least vaguely consistent with the previous version and keep it as close to NFC as
I could.
There's no real reason not to merge sideeffect calls though, so let's do it! Small fixup
along the way to ensure we don't create indirect calls.
Should fix PR28964.
llvm-svn: 280215
|
|
|
|
|
|
| |
This was missing, meaning the metadata in sunk instructions was potentially bogus and could cause miscompiles.
llvm-svn: 280072
|
|
|
|
| |
llvm-svn: 279990
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: No functional changes, just refactoring to make D23947 simpler.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23954
llvm-svn: 279982
|
|
|
|
|
|
|
|
|
| |
We forgot to remove optimization metadata when performing hosting during
FoldTwoEntryPHINode.
This fixes PR29163.
llvm-svn: 279980
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can't mark ORE (a function pass) preserved as required by the loop
passes because that is how we ensure that the required passes like
LazyBFI are all available any time ORE is used. See the new comments in
the patch.
Instead we use it directly just like the inliner does in D22694.
As expected there is some additional overhead after removing the caching
provided by analysis passes. The worst case, I measured was
LNT/CINT2006_ref/401.bzip2 which regresses by 12%. As before, this only
affects -Rpass-with-hotness and not default compilation.
llvm-svn: 279829
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
when unroll runtime iteration loop.
In llvm::UnrollRuntimeLoopRemainder, if the loop to be unrolled is the inner
loop inside a loop nest, the scalar evolution needs to be dropped for its
parent loop which is done by ScalarEvolution::forgetLoop. However, we can
postpone forgetLoop to the end of UnrollRuntimeLoopRemainder so TripCountSC
expansion can still reuse existing value.
Differential Revision: https://reviews.llvm.org/D23572
llvm-svn: 279748
|
|
|
|
|
|
|
|
| |
Given that we're not currently using blocker info, and whether or not we
will end up using it it is unclear, don't waste 8 (or 4) bytes of memory
per path node.
llvm-svn: 279493
|
|
|
|
| |
llvm-svn: 279462
|
|
|
|
| |
llvm-svn: 279461
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[Recommitting now an unrelated assertion in SROA is sorted out]
The new version has several advantages:
1) IMSHO it's more readable and neater
2) It handles loads and stores properly
3) It can handle any number of incoming blocks rather than just two. I'll be taking advantage of this in a followup patch.
With this change we can now finally sink load-modify-store idioms such as:
if (a)
return *b += 3;
else
return *b += 4;
=>
%z = load i32, i32* %y
%.sink = select i1 %a, i32 5, i32 7
%b = add i32 %z, %.sink
store i32 %b, i32* %y
ret i32 %b
When this works for switches it'll be even more powerful.
Round 4. This time we should handle all instructions correctly, and not replace any operands that need to be constant with variables.
This was really hard to determine safely, so the helper function should be put into the Instruction API. I'll do that as a followup.
llvm-svn: 279460
|
|
|
|
|
|
| |
This reverts commit r279443. It caused buildbot failures.
llvm-svn: 279447
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new version has several advantages:
1) IMSHO it's more readable and neater
2) It handles loads and stores properly
3) It can handle any number of incoming blocks rather than just two. I'll be taking advantage of this in a followup patch.
With this change we can now finally sink load-modify-store idioms such as:
if (a)
return *b += 3;
else
return *b += 4;
=>
%z = load i32, i32* %y
%.sink = select i1 %a, i32 5, i32 7
%b = add i32 %z, %.sink
store i32 %b, i32* %y
ret i32 %b
When this works for switches it'll be even more powerful.
Round 4. This time we should handle all instructions correctly, and not replace any operands that need to be constant with variables.
This was really hard to determine safely, so the helper function should be put into the Instruction API. I'll do that as a followup.
llvm-svn: 279443
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We are going to combine poisoning of red zones and scope poisoning.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23623
llvm-svn: 279373
|
|
|
|
|
|
|
|
|
|
| |
ComputeASanStackFrameLayout"
This reverts commit r279020.
Speculative revert in hope to fix asan test on arm.
llvm-svn: 279332
|
|
|
|
|
|
|
| |
This reverts commit r279229. It breaks intrinsic function calls in
diamonds.
llvm-svn: 279313
|
|
|
|
|
|
|
|
| |
CGSCC use a WeakVH to track call sites. RAUW a call within a function
can result in that WeakVH getting confused about whether or not the call
site is still around.
llvm-svn: 279268
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new version has several advantages:
1) IMSHO it's more readable and neater
2) It handles loads and stores properly
3) It can handle any number of incoming blocks rather than just two. I'll be taking advantage of this in a followup patch.
With this change we can now finally sink load-modify-store idioms such as:
if (a)
return *b += 3;
else
return *b += 4;
=>
%z = load i32, i32* %y
%.sink = select i1 %a, i32 5, i32 7
%b = add i32 %z, %.sink
store i32 %b, i32* %y
ret i32 %b
When this works for switches it'll be even more powerful.
llvm-svn: 279229
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We are going to combine poisoning of red zones and scope poisoning.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23623
llvm-svn: 279020
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
|
|
|
|
|
|
|
|
| |
When comparing a User* to a BasicBlock::iterator in
passingValueIsAlwaysUndefined, don't dereference the iterator in case it
is end().
llvm-svn: 278872
|
|
|
|
|
|
|
| |
We were clearing it out in LoopUnswitch and InlineFunction instead of
attempting to preserve it.
llvm-svn: 278860
|
|
|
|
|
|
|
|
|
|
|
| |
Clearing out the AssumptionCache can cause us to rescan the entire
function for assumes. If there are many loops, then we are scanning
over the entire function many times.
Instead of clearing out the AssumptionCache, register all cloned
assumes.
llvm-svn: 278854
|