| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
| |
llvm-svn: 355583
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I'm not too familiar with this pass, so there might be a better
solution, but this appears to fix the degenerate:
PR40930
PR40931
PR40932
PR40934
...without affecting any real-world code.
As we've seen in several other passes, when we have unreachable blocks,
they can contain semi-bogus IR and/or cause unexpected conditions. We
would not typically expect these patterns to make it this far, but we
have to guard against them anyway.
llvm-svn: 355337
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes an issue where we would compute an unnecessarily small alignment during scalar promotion when no store is not to be guaranteed to execute, but we've proven load speculation safety. Since speculating a load requires proving the existing alignment is valid at the new location (see Loads.cpp), we can use the alignment fact from the load.
For non-atomics, this is a performance problem. For atomics, this is a correctness issue, though an *incredibly* rare one to see in practice. For atomics, we might not be able to lower an improperly aligned load or store (i.e. i32 align 1). If such an instruction makes it all the way to codegen, we *may* fail to codegen the operation, or we may simply generate a slow call to a library function. The part that makes this super hard to see in practice is that the memory location actually *is* well aligned, and instcombine knows that. So, to see a failure, you have to have a) hit the bug in LICM, b) somehow hit a depth limit in InstCombine/ValueTracking to avoid fixing the alignment, and c) then have generated an instruction which fails codegen rather than simply emitting a slow libcall. All around, pretty hard to hit.
Differential Revision: https://reviews.llvm.org/D58809
llvm-svn: 355217
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
dangling elements in ConstIntInfoVec for new PM
Summary:
ConstIntInfoVec contains elements extracted from the previous function.
In new PM, releaseMemory() is not called and the dangling elements can
cause segfault in findConstantInsertionPoint.
Rename releaseMemory() to cleanup() to deliver the idea that it is
mandatory and call cleanup() in ConstantHoistingPass::runImpl to fix
this.
Reviewers: ormris, zzheng, dmgreen, wmi
Reviewed By: ormris, wmi
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58589
llvm-svn: 355174
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The original assumption for the insertDef method was that it would not
materialize Defs out of no-where, hence it will not insert phis needed
after inserting a Def.
However, when cloning an instruction (use case used in LICM), we do
materialize Defs "out of no-where". If the block receiving a Def has at
least one other Def, then no processing is needed. If the block just
received its first Def, we must check where Phi placement is needed.
The only new usage of insertDef is in LICM, hence the trigger for the bug.
But the original goal of the method also fails to apply for the move()
method. If we move a Def from the entry point of a diamond to either the
left or right blocks, then the merge block must add a phi.
While this usecase does not currently occur, or may be viewed as an
incorrect transformation, MSSA must behave corectly given the scenario.
Resolves PR40749 and PR40754.
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58652
llvm-svn: 355040
|
|
|
|
|
|
|
| |
SimpleLoopUnswitch must update MemorySSA when removing instructions.
Resolves PR39197.
llvm-svn: 354919
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch separates two semantics of `applyUpdates`:
1. User provides an accurate CFG diff and the dominator tree is updated according to the difference of `the number of edge insertions` and `the number of edge deletions` to infer the status of an edge before and after the update.
2. User provides a sequence of hints. Updates mentioned in this sequence might never happened and even duplicated.
Logic changes:
Previously, removing invalid updates is considered a side-effect of deduplication and is not guaranteed to be reliable. To handle the second semantic, `applyUpdates` does validity checking before deduplication, which can cause updates that have already been applied to be submitted again. Then, different calls to `applyUpdates` might cause unintended consequences, for example,
```
DTU(Lazy) and Edge A->B exists.
1. DTU.applyUpdates({{Delete, A, B}, {Insert, A, B}}) // User expects these 2 updates result in a no-op, but {Insert, A, B} is queued
2. Remove A->B
3. DTU.applyUpdates({{Delete, A, B}}) // DTU cancels this update with {Insert, A, B} mentioned above together (Unintended)
```
But by restricting the precondition that updates of an edge need to be strictly ordered as how CFG changes were made, we can infer the initial status of this edge to resolve this issue.
Interface changes:
The second semantic of `applyUpdates` is separated to `applyUpdatesPermissive`.
These changes enable DTU(Lazy) to use the first semantic if needed, which is quite useful in `transforms/utils`.
Reviewers: kuhar, brzycki, dmgreen, grosser
Reviewed By: brzycki
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58170
llvm-svn: 354669
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The correct edge being deleted is not to the unswitched exit block, but to the
original block before it was split. That's the key in the map, not the
value.
The insert is correct. The new edge is to the .split block.
The splitting turns OriginalBB into:
OriginalBB -> OriginalBB.split.
Assuming the orignal CFG edge: ParentBB->OriginalBB, we must now delete
ParentBB->OriginalBB, not ParentBB->OriginalBB.split.
llvm-svn: 354656
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This patch converts all existing `insertEdge*/deleteEdge*` to `applyUpdates` and marks `insertEdge*/deleteEdge*` as deprecated.
Reviewers: kuhar, brzycki
Reviewed By: kuhar, brzycki
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58443
llvm-svn: 354652
|
|
|
|
|
|
|
| |
MemorySSA is now updated when forming dedicated exit blocks.
Resolves PR40037.
llvm-svn: 354623
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
MemorySSA is not properly updated in LoopSimplifyCFG after recent changes. Use SplitBlock utility to resolve that and clear all updates once handleDeadExits is finished.
All updates that follow are removal of edges which are safe to handle via the removeEdge() API.
Also, deleting dead blocks is done correctly as is, i.e. delete from MemorySSA before updating the CFG and DT.
Reviewers: mkazantsev, rtereshin
Subscribers: sanjoy, jlebar, Prazek, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58524
llvm-svn: 354613
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Cleanup nop assignments.
Reviewers: george.burgess.iv, davide
Subscribers: sanjoy, jlebar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58308
llvm-svn: 354612
|
|
|
|
| |
llvm-svn: 354580
|
|
|
|
|
|
|
|
|
| |
Check the operands of a select are pointers, to determine if it is an address
expression or not.
https://reviews.llvm.org/D58226
llvm-svn: 354576
|
|
|
|
|
|
|
|
| |
When we create fictive switch in preheader, we should take
care about MSSA and delete edge between old preheader and
header.
llvm-svn: 354547
|
|
|
|
|
|
|
| |
We are planning to be able to delete the current loop in LoopSimplifyCFG
in the future. Add API to notify the loop pass manager that it happened.
llvm-svn: 354314
|
|
|
|
|
|
| |
deleted
llvm-svn: 354313
|
|
|
|
|
|
|
| |
This should be NFC in current use case of this method, but it will
help to use it for solving more compex tasks in follow-up patches.
llvm-svn: 354227
|
|
|
|
| |
llvm-svn: 354220
|
|
|
|
| |
llvm-svn: 354218
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Unlimitted number of calls to getClobberingAccess can lead to high
compile times in pathological cases.
Limitting getClobberingAccess to a fairly high number. Can be adjusted
based on users/need.
Note: this is the only user of MemorySSA currently enabled by default.
The same handling exists in LICM (disabled atm). As MemorySSA gains more
users, this logic of capping will need to move inside MemorySSA.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D58248
llvm-svn: 354182
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The idea is that we now manipulate bases through a `unsigned BaseID` based on
order of appearance in the comparison chain rather than through the `Value*`.
Fixes 40714.
Reviewers: gchatelet
Subscribers: mgrang, jfb, jdoerfert, llvm-commits, hans
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58274
llvm-svn: 354131
|
|
|
|
| |
llvm-svn: 354128
|
|
|
|
| |
llvm-svn: 354124
|
|
|
|
| |
llvm-svn: 354123
|
|
|
|
| |
llvm-svn: 354118
|
|
|
|
| |
llvm-svn: 354013
|
|
|
|
| |
llvm-svn: 353941
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support of guards expressed in explicit form via
`widenable_condition` in Guard Widening pass.
Differential Revision: https://reviews.llvm.org/D56075
Reviewed By: reames
llvm-svn: 353932
|
|
|
|
|
|
|
|
| |
Known underlying bugs have been fixed, intensive fuzz testing did not
find any new problems. Re-enabling by default. Feel free to revert if
it causes any functional failures.
llvm-svn: 353911
|
|
|
|
|
|
|
|
| |
Add plumbing to get MemorySSA in the remaining loop passes.
Also update unit test to add the dependency.
[EnableMSSALoopDependency remains disabled].
llvm-svn: 353901
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Unlimitted number of calls to getClobberingAccess can lead to high
compile times in pathological cases.
Switching EnableLicmCap flag from bool to int, and enabling to default 100.
(tested to be appropriate for current bechmarks)
We can revisit this value when enabling MemorySSA.
Reviewers: sanjoy, chandlerc, george.burgess.iv
Subscribers: jlebar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57968
llvm-svn: 353897
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Logic in `getInsertPointForUses` doesn't account for a corner case when `Def`
only comes to a Phi user from unreachable blocks. In this case, the incoming
value may be arbitrary (and not even available in the input block) and break
the loop-related invariants that are asserted below.
In fact, if we encounter this situation, no IR modification is needed. This
Phi will be simplified away with nearest cleanup.
Differential Revision: https://reviews.llvm.org/D58045
Reviewed By: spatel
llvm-svn: 353816
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The function `LI.erase` has some invariants that need to be preserved when it
tries to remove a loop which is not the top-level loop. In particular, it
requires loop's preheader to be strictly in loop's parent. Our current logic
of deletion of dead blocks may erase the information about preheader before we
handle the loop, and therefore we may hit this assertion.
This patch changes the logic of loop deletion: we make them top-level loops
before we actually erase them. This allows us to trigger the simple branch of
`erase` logic which just detatches blocks from the loop and does not try to do
some complex stuff that need this invariant.
Thanks to @uabelho for reporting this!
Differential Revision: https://reviews.llvm.org/D57221
Reviewed By: fedor.sergeev
llvm-svn: 353813
|
|
|
|
| |
llvm-svn: 353804
|
|
|
|
|
|
|
|
|
|
|
| |
Utility function that we use for blocks deletion always unconditionally removes
one-input Phis. In LoopSimplifyCFG, it can lead to breach of LCSSA form.
This patch alters this function to keep them if needed.
Differential Revision: https://reviews.llvm.org/D57231
Reviewed By: fedor.sergeev
llvm-svn: 353803
|
|
|
|
| |
llvm-svn: 353801
|
|
|
|
|
|
|
|
|
|
|
| |
The code checked that the first root was an appropriate distance from
the base value, but skipped checking the other roots. This could lead to
rerolling a loop that can't be legally rerolled (at least, not without
rewriting the loop in a non-trivial way).
Differential Revision: https://reviews.llvm.org/D56812
llvm-svn: 353779
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If there is no clobbering access for a store inside the loop, that store
can only be hoisted if there are no interfearing loads.
A more general verification introduced here: there are no loads that are
not optimized to an access outside the loop.
Addresses PR40586.
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57967
llvm-svn: 353734
|
|
|
|
| |
llvm-svn: 353667
|
|
|
|
|
|
|
|
|
| |
`CallBase`.
Users have been updated. You can see how to update any out-of-tree
usages: pass `cast<CallBase>(CS.getInstruction())`.
llvm-svn: 353661
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
`CallBase` class rather than `CallSite` wrappers.
I pushed this change down through most of the statepoint infrastructure,
completely removing the use of CallSite where I could reasonably do so.
I ended up making a couple of cut-points: generic call handling
(instcombine, TLI, SDAG). As soon as it hit truly generic handling with
users outside the immediate code, I simply transitioned into or out of
a `CallSite` to make this a reasonable sized chunk.
Differential Revision: https://reviews.llvm.org/D56122
llvm-svn: 353660
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
|
|
|
|
|
|
|
|
|
|
|
| |
`insert/deleteEdge` methods in DTU can make updates incorrectly in some cases
(see https://bugs.llvm.org/show_bug.cgi?id=40528), and it is recommended to
use `applyUpdates` methods instead when it is needed to make a mass update in CFG.
Differential Revision: https://reviews.llvm.org/D57316
Reviewed By: kuhar
llvm-svn: 353502
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Modify GenerateConstantOffsetsImpl to create offsets that can be used
by indexed addressing modes. If formulae can be generated which
result in the constant offset being the same size as the recurrence,
we can generate a pre-indexed access. This allows the pointer to be
updated via the single pre-indexed access so that (hopefully) no
add/subs are required to update it for the next iteration. For small
cores, this can significantly improve performance DSP-like loops.
Differential Revision: https://reviews.llvm.org/D55373
llvm-svn: 353403
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
MemorySSA.
Summary:
Experimentally we found that promotion to scalars carries less benefits
than sinking and hoisting in LICM. When using MemorySSA, we build an
AliasSetTracker on demand in order to reuse the current infrastructure.
We only build it if less than AccessCapForMSSAPromotion exist in the
loop, a cap that is by default set to 250. This value ensures there are
no runtime regressions, and there are small compile time gains for
pathological cases. A much lower value (20) was found to yield a single
regression in the llvm-test-suite and much higher benefits for compile
times. Conservatively we set the current cap to a high value, but we will
explore lowering it when MemorySSA is enabled by default.
Reviewers: sanjoy, chandlerc
Subscribers: nemanjai, jlebar, Prazek, george.burgess.iv, jfb, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D56625
llvm-svn: 353339
|
|
|
|
| |
llvm-svn: 353290
|
|
|
|
| |
llvm-svn: 353276
|
|
|
|
|
|
|
|
| |
DomTreeUpdater depends on headers from Analysis, but is in IR. This is a
layering violation since Analysis depends on IR. Relocate this code from IR
to Analysis to fix the layering violation.
llvm-svn: 353265
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When LSR first adds SCEVs to BaseRegs, it only does it if `isZero()` has
returned false. In the end, in invocation of `InsertFormula`, it asserts that
all values there are still not zero constants. However between these two
points, it makes some transformations, in particular extends them to wider
type.
SCEV does not give us guarantee that if `S` is not a constant zero, then
`sext(S)` is also not a constant zero. It might have missed some optimizing
transforms when it was calculating `S` and then made them when it took `sext`.
For example, it may happen if previously optimizing transforms were limited
by depth or somehow else.
This patch adds a bailout when we may end up with a zero SCEV after extension.
Differential Revision: https://reviews.llvm.org/D57565
Reviewed By: samparker
llvm-svn: 353136
|