| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
| |
a significant code cleanup here.
The handling of analyses in this pass is overly complex and can be
simplified significantly, but the right way to do that is to simplify
all of the code not just the analyses, and that'll require pretty
extensive edits that would be noisy with formatting changes mixed into
them.
llvm-svn: 244828
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To be clear: this is an *optimization* not a correctness change.
CodeGenPrep likes to duplicate icmps feeding branch instructions to take advantage of x86's ability to fuze many comparison/branch patterns into a single micro-op and to reduce the need for materializing i1s into general registers. PlaceSafepoints likes to place safepoint polls right at the end of basic blocks (immediately before terminators) when inserting entry and backedge safepoints. These two heuristics interact in a somewhat unfortunate way where the branch terminating the original block will be controlled by a condition driven by unrelocated pointers. This forces the register allocator to keep both the relocated and unrelocated values of the pointers feeding the icmp alive over the safepoint poll.
One simple fix would have been to just adjust PlaceSafepoints to move one back in the basic block, but you can reach similar cases as a result of LICM or other hoisting passes. As a result, doing a post insertion fixup seems to be more robust.
I considered doing this in CodeGenPrep itself, but having to update the live sets of already rewritten safepoints gets complicated fast. In particular, you can't just use def/use information because by moving the icmp, we're extending the live range of it's inputs potentially.
Instead, this patch teaches RewriteStatepointsForGC to make the required adjustments before making the relocations explicit in the IR. This change really highlights the fact that RSForGC is a CodeGenPrep-like pass which is performing target specific lowering. In the long run, we may even want to combine the two though this would require a lot more smarts to be integrated into RSForGC first. We currently rely on being able to run a set of cleanup passes post rewriting because the IR RSForGC generates is pretty damn ugly.
Differential Revision: http://reviews.llvm.org/D11819
llvm-svn: 244821
|
|
|
|
|
|
|
|
|
|
| |
algorithm
When rewriting the IR such that base pointers are available for every live pointer, we potentially need to duplicate instructions to propagate the base. The original code had only handled PHI and Select under the belief those were the only instructions which would need duplicated. When I added support for vector instructions, I'd added a collection of hacks for ExtractElement which caught most of the common cases. Of course, I then found the one test case my hacks couldn't cover. :)
This change removes all of the early hacks for extract element. By defining extractelement as a BDV (rather than trying to look through it), we can extend the rewriting algorithm to duplicate the extract as needed. Note that a couple of peephole optimizations were left in for the moment, because while we now handle extractelement as a first class citizen, we're not yet handling insertelement. That change will follow in the near future.
llvm-svn: 244808
|
|
|
|
|
|
|
|
| |
I forgot to add these in r244780 and r244778. Sorry about that.
Also order the static dependencies in a lexicographical order.
llvm-svn: 244787
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
just depend on it directly.
This was particularly frustrating because there was a really wide
mixture of using a member variable and re-extracting it from the AA that
happened to be around. I think the result is much more clear.
I've also deleted all of the pointless null checks and used references
across the APIs where I could to make it explicit that this cannot be
null in a useful fashion.
llvm-svn: 244780
|
|
|
|
| |
llvm-svn: 244672
|
|
|
|
| |
llvm-svn: 244668
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D11687
llvm-svn: 244474
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change adds the unroll metadata "llvm.loop.unroll.enable" which directs
the optimizer to unroll a loop fully if the trip count is known at compile time, and
unroll partially if the trip count is not known at compile time. This differs from
"llvm.loop.unroll.full" which explicitly does not unroll a loop if the trip count is not
known at compile time.
The "llvm.loop.unroll.enable" is intended to be added for loops annotated with
"#pragma unroll".
llvm-svn: 244466
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The scalarizer can cache incorrect entries when walking up a chain of
insertelement instructions. This occurs when it encounters more than one
instruction that it is not actively searching for, as it unconditionally caches
every element it finds. The fix is to only cache the first element that it
isn't searching for so we don't overwrite correct entries.
Reviewers: hfinkel
Differential Revision: http://reviews.llvm.org/D11559
llvm-svn: 244448
|
|
|
|
| |
llvm-svn: 244402
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the full set of checks that clients can further filter. IOW,
it's client-agnostic. This makes LAA complete in the sense that it now
provides the two main results of its analysis precomputed:
1. memory dependences via getDepChecker().getInsterestingDependences()
2. run-time checks via getRuntimePointerCheck().getChecks()
However, as a consequence we now compute this information pro-actively.
Thus if the client decides to skip the loop based on the dependences
we've computed the checks unnecessarily. In order to see whether this
was a significant overhead I checked compile time on SPEC2k6 LTO bitcode
files. The change was in the noise.
The checks are generated in canCheckPtrAtRT, at the same place where we
used to call groupChecks to merge checks.
llvm-svn: 244368
|
|
|
|
|
|
|
|
| |
After r244074, we now have a successors() method to iterate over
all the successors of a TerminatorInst. This commit changes a bunch
of eligible loops to use it.
llvm-svn: 244260
|
|
|
|
| |
llvm-svn: 244248
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
iisUnmovableInstruction() had a list of instructions hardcoded which are
considered unmovable. The list lacked (at least) an entry for the va_arg
and cmpxchg instructions.
Fix this by introducing a new Instruction::mayBeMemoryDependent()
instead of maintaining another instruction list.
Patch by Matthias Braun <matze@braunis.de>.
Differential Revision: http://reviews.llvm.org/D11577
rdar://problem/22118647
llvm-svn: 244244
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first mechanical step in preparation for making this and all
the other alias analysis passes available to the new pass manager. I'm
factoring out all the totally boring changes I can so I'm moving code
around here with no other changes. I've even minimized the formatting
churn.
I'll reformat and freshen comments on the interface now that its located
in the right place so that the substantive changes don't triger this.
llvm-svn: 244197
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
around a DataLayout interface in favor of directly querying DataLayout.
This wrapper specifically helped handle the case where this no
DataLayout, but LLVM now requires it simplifynig all of this. I've
updated callers to directly query DataLayout. This in turn exposed
a bunch of places where we should have DataLayout readily available but
don't which I've fixed. This then in turn exposed that we were passing
DataLayout around in a bunch of arguments rather than making it readily
available so I've also fixed that.
No functionality changed.
llvm-svn: 244189
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This patch adds support to preserve make.implicit metadata for unswitched conditions in loop pre-header.
Reviewers: sanjoy, weimingz
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D11769
llvm-svn: 244132
|
|
|
|
|
|
| |
more involved change to the cost computation pattern.
llvm-svn: 244095
|
|
|
|
| |
llvm-svn: 243999
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).
Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.
This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.
Differential Revision: http://reviews.llvm.org/D11734
llvm-svn: 243994
|
|
|
|
|
|
|
|
| |
This change was done as an audit and is by inspection. The new EH
system is still very much a work in progress. NFC for the landingpad
case.
llvm-svn: 243965
|
|
|
|
|
|
| |
This reverts commit r243348 and r243357. They caused PR24347.
llvm-svn: 243939
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
through PHI nodes across iterations.
This patch teaches the new advanced loop unrolling heuristics to propagate
constants into the loop from the preheader and around the backedge after
simulating each iteration. This lets us brute force solve simple recurrances
that aren't modeled effectively by SCEV. It also makes it more clear why we
need to process the loop in-order rather than bottom-up which might otherwise
make much more sense (for example, for DCE).
This came out of an attempt I'm making to develop a principled way to account
for dead code in the unroll estimation. When I implemented
a forward-propagating version of that it produced incorrect results due to
failing to propagate *cost* between loop iterations through the PHI nodes, and
it occured to me we really should at least propagate simplifications across
those edges, and it is quite easy thanks to the loop being in canonical and
LCSSA form.
Differential Revision: http://reviews.llvm.org/D11706
llvm-svn: 243900
|
|
|
|
|
|
| |
This was already done in most places a while ago. This just fixes the ones that crept in over time.
llvm-svn: 243842
|
|
|
|
|
|
|
|
|
|
| |
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Differential Revision: http://reviews.llvm.org/D11097
llvm-svn: 243766
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before, we were passing the pointer partitions to LAA. Now, we get all
the checks from LAA and filter out the checks within partitions in
LoopDistribution.
This effectively concludes the steps to move filtering memchecks from
LAA into its clients. There is still some cleanup left to remove the
unused interfaces in LAA that still take PtrPartition.
(Moving this functionality to LoopDistribution also requires
needsChecking on pointers to be made public.)
llvm-svn: 243613
|
|
|
|
|
|
|
|
| |
the other files that have the same typo. All comments, no functionality change! (Merely a "fuctionality" change.)
Bonus change to remove emacs major mode marker from SystemZMachineFunctionInfo.cpp because emacs already knows it's C++ from the extension. Also fix typo "appeary" in AMDGPUMCAsmInfo.h.
llvm-svn: 243585
|
|
|
|
|
|
| |
Previously successor selection was simply wrong.
llvm-svn: 243545
|
|
|
|
| |
llvm-svn: 243544
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
As added initially, statepoints required their call targets to be a
constant pointer null if ``numPatchBytes`` was non-zero. This turns out
to be a problem ergonomically, since there is no way to mark patchable
statepoints as calling a (readable) symbolic value.
This change remove the restriction of requiring ``null`` call targets
for patchable statepoints, and changes PlaceSafepoints to maintain the
symbolic call target through its transformation.
Reviewers: reames, swaroop.sridhar
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11550
llvm-svn: 243502
|
|
|
|
| |
llvm-svn: 243471
|
|
|
|
| |
llvm-svn: 243466
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before the patch, the checks were generated internally in
addRuntimeCheck. Now, we use the new overloaded version of
addRuntimeCheck that takes the ready-made set of checks as a parameter.
The checks are now generated by the client (LoopDistribution) with the
new RuntimePointerChecking::generateChecks API.
Also the new printChecks API is used to print out the checks for
debugging.
This is to continue the transition over to the new model whereby clients
will get the full set of checks from LAA, filter it and then pass it to
LoopVersioning and in turn to addRuntimeCheck.
llvm-svn: 243382
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If a scale or a base register can be rewritten as "Zext({A,+,1})" then
LSR will now consider a formula of that form in its normal cost
computation.
Depends on D9180
Reviewers: qcolombet, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9181
llvm-svn: 243348
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit r243167.
Duncan pointed out that dyn_cast can return null in these cases, so this
was an unsafe commit to make. Sorry for the noise.
Worryingly there were no tests which fail...
llvm-svn: 243302
|
|
|
|
|
|
|
|
|
| |
r243250 appeared to break clang/test/Analysis/dead-store.c on one of the build
slaves, but I couldn't reproduce this failure locally. Probably a false
positive as I saw this test was broken by r243246 or r243247 too but passed
later without people fixing anything.
llvm-svn: 243253
|
|
|
|
|
|
| |
breaks tests
llvm-svn: 243251
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CostModel::getInstructionCost
Summary:
This patch updates TargetTransformInfoImplCRTPBase::getGEPCost to consider
addressing modes. It now returns TCC_Free when the GEP can be completely folded
to an addresing mode.
I started this patch as I refactored SLSR. Function isGEPFoldable looks common
and is indeed used by some WIP of mine. So I extracted that logic to getGEPCost.
Furthermore, I noticed getGEPCost wasn't directly tested anywhere. The best
testing bed seems CostModel, but its getInstructionCost method invokes
getAddressComputationCost for GEPs which provides very coarse estimation. So
this patch also makes getInstructionCost call the updated getGEPCost for GEPs.
This change inevitably breaks some tests because the cost model changes, but
nothing looks seriously wrong -- if we believe the new cost model is the right
way to go, these tests should be updated.
This patch is not perfect yet -- the comments in some tests need to be updated.
I want to know whether this is a right approach before fixing those details.
Reviewers: chandlerc, hfinkel
Subscribers: aschwaighofer, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D9819
llvm-svn: 243250
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
conditions more effectively
Summary:
This patch improves trivial loop unswitch.
The current trivial loop unswitch only checks if loop header's terminator contains a trivial unswitch condition. But if the loop header only has one reachable successor (due to intentionally or unintentionally missed code simplification), we should consider the successor as part of the loop header. Therefore, instead of stopping at loop header's terminator, we should keep traversing its successors within loop until reach a *real* conditional branch or switch (whose condition can not be constant folded). This change will enable a single -loop-unswitch pass to unswitch multiple trivial conditions (unswitch one trivial condition could open opportunity to unswitch another one in the same loop), while the old implementation can unswitch only one per pass.
Reviewers: reames, broune
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11481
llvm-svn: 243203
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch extend LoopReroll pass to hand the loops which
is similar to the following:
while (len > 1) {
sum4 += buf[len];
sum4 += buf[len-1];
len -= 2;
}
llvm-svn: 243171
|
|
|
|
|
|
|
|
| |
Since both places which set this variable do so with dyn_cast, and not
dyn_cast_or_null, its impossible to get a nullptr here, so we can remove
the check.
llvm-svn: 243167
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of the pattern
for (auto I = x.rbegin(), E = x.end(); I != E; ++I)
we can use make_range to construct the reverse range and iterate using
that instead.
llvm-svn: 243163
|
|
|
|
|
|
| |
The names for instructions inserted were previous dependent on iteration order. By deriving the names from the original instructions, we can avoid instability in tests without resorting to ordered traversals. It also makes the IR mildly easier to read at large scale.
llvm-svn: 243140
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Resolving a branch allows us to ignore blocks that won't be executed, and thus make our estimate more accurate.
This patch is intended to be applied after D10205 (though it could be applied independently).
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10206
llvm-svn: 243084
|
|
|
|
| |
llvm-svn: 243076
|
|
|
|
|
|
|
|
|
|
| |
pointer algorithm [NFC]
The new code should hopefully be equivalent to the old code; it just uses a worklist to track instructions which need to visited rather than iterating over all instructions visited each time. This should be faster, but the primary benefit is that the purpose should be more clear and the diff of adding another instruction type (forthcoming) much more obvious.
Differential Revision: http://reviews.llvm.org/D11480
llvm-svn: 243071
|
|
|
|
|
|
| |
This check is already done by findClosestMatchingDominator.
llvm-svn: 243065
|
|
|
|
|
|
|
|
| |
w/more than just PHIs
Today, Select instructions also have associated PhiStates. In the near future, so will ExtractElement and SuffleVector.
llvm-svn: 243056
|
|
|
|
|
|
| |
Deleting much of the code using trace-rewrite-statepoints and use idiomatic DEBUG statements instead. This includes adding operator<< to a helper class.
llvm-svn: 243054
|