| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: The convenience wrapper in STLExtras is available since rL342102.
Reviewers: dblaikie, javed.absar, JDevlieghere, andreadb
Subscribers: MatzeB, sanjoy, arsenm, dschuff, mehdi_amini, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, javed.absar, gbedwell, jrtc27, mgrang, atanasyan, steven_wu, george.burgess.iv, dexonsmith, kristina, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D52573
llvm-svn: 343163
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch extends LoopInterchange to move LCSSA to the right place
after interchanging. This is required for LoopInterchange to become a
function pass.
An alternative to the manual moving of the PHIs, we could also re-form
the LCSSA phis for a set of interchanged loops, but that's more
expensive.
Reviewers: efriedma, mcrosier, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D52154
llvm-svn: 343132
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit bd7b44f35ee9fbe365eb25ce55437ea793b39346.
Reland r342994: disabled the optimization and explicitly enable it in test.
-mllvm -consthoist-min-num-to-rebase<unsigned>=0
[ConstHoist] Do not rebase single (or few) dependent constant
If an instance (InsertionPoint or IP) of Base constant A has only one or few
rebased constants depending on it, do NOT rebase. One extra ADD instruction is
required to materialize each rebased constant, assuming A and the rebased have
the same materialization cost.
Differential Revision: https://reviews.llvm.org/D52243
llvm-svn: 343053
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This caused a couple test failures on a bot:
CodeGen/X86/constant-hoisting-bfi.ll
Transforms/ConstantHoisting/X86/ehpad.ll
Example:
http://green.lab.llvm.org/green/job/clang-stage1-cmake-RA-incremental/53575/
llvm-svn: 343005
|
| |
|
|
|
|
|
|
|
|
|
| |
If an instance (InsertionPoint or IP) of Base constant A has only one or few
rebased constants depending on it, do NOT rebase. One extra ADD instruction is
required to materialize each rebased constant, assuming A and the rebased have
the same materialization cost.
Differential Revision: https://reviews.llvm.org/D52243
llvm-svn: 342994
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: javed.absar, trentxintong, courbet
Reviewed By: trentxintong
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52433
llvm-svn: 342919
|
| |
|
|
|
|
|
|
|
| |
"[AMDGPU] lower-switch in preISel as a workaround for legacy DA"
This broke regression tests. The first breakage was noticed here:
http://lab.llvm.org:8011/builders/lld-x86_64-freebsd/builds/23549
llvm-svn: 342743
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The default target of the switch instruction may sometimes be an
"unreachable" block, when it is guaranteed that one of the cases is
always taken. The dominator tree concludes that such a switch
instruction does not have an immediate post dominator. This confuses
divergence analysis, which is unable to propagate sync dependence to
the targets of the switch instruction.
As a workaround, the AMDGPU target now invokes lower-switch as a
preISel pass. LowerSwitch is designed to handle the unreachable
default target correctly, allowing the divergence analysis to locate
the correct immediate dominator of the now-lowered switch.
Reviewers: arsenm, nhaehnle
Reviewed By: nhaehnle
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits, simoll
Differential Revision: https://reviews.llvm.org/D52221
llvm-svn: 342722
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
his code was in CGDecl.cpp and really belongs in LLVM's isBytewiseValue. Teach isBytewiseValue the tricks clang's isRepeatedBytePattern had, including merging undef properly, and recursing on more types.
clang part of this patch: D51752
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51751
llvm-svn: 342709
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Made getName helper to return std::string (instead of StringRef initially) to fix
asan builtbot failures on CGSCC tests.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342664
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Before removing basic blocks that ipsccp has considered as dead
all uses of the basic block label must be removed. That is done
by calling ConstantFoldTerminator on the users. An exception
is when the branch condition is an undef value. In such
scenarios ipsccp is using some internal assumptions regarding
which edge in the control flow that should remain, while
ConstantFoldTerminator don't know how to fold the terminator.
The problem addressed here is related to ConstantFoldTerminator's
ability to rewrite a 'switch' into a conditional 'br'. In such
situations ConstantFoldTerminator returns true indicating that
the terminator has been rewritten. However, ipsccp treated the
true value as if the edge to the dead basic block had been
removed. So the code for resolving an undef branch condition
did not trigger, and we ended up with assertion that there were
uses remaining when deleting the basic block.
The solution is to resolve indeterminate branches before the
call to ConstantFoldTerminator.
Reviewers: efriedma, fhahn, davide
Reviewed By: fhahn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52232
llvm-svn: 342632
|
| |
|
|
|
|
|
|
| |
as it was causing failures in the asan buildbot.
This reverts commit r342597.
llvm-svn: 342616
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342597
|
| |
|
|
|
|
| |
A bunch of bots fail to compile unittests. Reverting.
llvm-svn: 342552
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342544
|
| |
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D51998
llvm-svn: 342498
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Adds LLVMAddUnifyFunctionExitNodesPass to expose
createUnifyFunctionExitNodesPass to the C and OCaml APIs.
Reviewers: whitequark, deadalnix
Reviewed By: whitequark
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52212
llvm-svn: 342476
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Adds LLVMAddLowerAtomicPass to expose createLowerAtomicPass in the C
and OCaml APIs.
Reviewers: whitequark, deadalnix
Reviewed By: whitequark
Subscribers: jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52211
llvm-svn: 342475
|
| |
|
|
|
|
|
|
|
|
|
| |
A piece of logic in rewriteLoopExitValues has a weird check on number of
users which allowed an unprofitable transform in case if an instruction has
more than 6 users.
Differential Revision: https://reviews.llvm.org/D51404
Reviewed By: etherzhhb
llvm-svn: 342444
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
failures easier to track.
Summary:
EarlyCSE can make IR changes that will leave MemorySSA with accesses claiming to be optimized, but for which a subsequent MemorySSA run will yield a different optimized result.
Due to relying on AA queries, we can't fix this in general, unless we recompute MemorySSA.
Adding some tests to track this and a basic verify for future potential failures.
Reviewers: george.burgess.iv, gberry
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D51960
llvm-svn: 342422
|
| |
|
|
| |
llvm-svn: 342360
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
loops.
As preparation for LoopInterchange becoming a loop pass, it needs to
preserve ScalarEvolution. Even though interchanging should not change
the trip count of the loop, it modifies loop entry, latch and exit
blocks.
I added -verify-scev to some loop interchange tests, but the verification does
not catch problems caused by missing invalidation of SE in loop interchange, as
the trip counts themselves do not change. So there might be potential to
make the SE verification covering more stuff in the future.
Reviewers: mkazantsev, efriedma, karthikthecool
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D52026
llvm-svn: 342209
|
| |
|
|
| |
llvm-svn: 342202
|
| |
|
|
|
|
|
|
|
|
|
| |
This adds DebugCounter support to the PartiallyInlineLibCalls pass,
which should make debugging/automated bisection easier in the future.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D50093
llvm-svn: 342172
|
| |
|
|
|
|
|
|
| |
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D50092
llvm-svn: 342170
|
| |
|
|
|
|
|
|
| |
potential
This causes or exposes indeterminism that is visible in the output of -reassociate.
llvm-svn: 342083
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix for https://bugs.llvm.org/show_bug.cgi?id=38912.
In GVNHoist::computeInsertionPoints() we iterate over the Value
Numbers and calculate the Iterated Dominance Frontiers without
clearing the IDFBlocks vector first. IDFBlocks ends up accumulating
an insane number of basic blocks, which bloats the compilation time
of SemaChecking.cpp with ubsan enabled.
Differential Revision: https://reviews.llvm.org/D51980
llvm-svn: 342055
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Update MemorySSA in old LoopUnswitch pass.
Actual dependency and update is disabled by default.
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D45301
llvm-svn: 341984
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are 2 cases when we create PHI nodes:
* For the result of the call that was duplicated in the split blocks.
Those PHI nodes should have the debug location of the call.
* For values produced before the call. Those instructions need to be
duplicated in the split blocks and the PHI nodes should have the
debug locations of those instructions.
Fixes PR37962.
Reviewers: junbuml, gbedwell, vsk
Reviewed By: junbuml
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D51919
llvm-svn: 341970
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently we re-use cached info from sub loops or traverse them
to populate AliasSetTracker. But after that we traverse all basic blocks
from the current loop. This is redundant work.
All what we need is traversing the all basic blocks from the loop except
those which are used to get the data from the cache.
This should improve compile time only.
Reviewers: mkazantsev, reames, kariddi, anna
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51715
llvm-svn: 341896
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
IndVarSimplify's design is somewhat odd in the way how it reports that
some transform has made a change. It has a `Changed` field which can
be set from within any function, which makes it hard to track whether or
not it was set properly after a transform was made. It leads to oversights
in setting this flag where needed, see example in PR38855.
This patch removes the `Changed` field, turns it into a local and unifies
the signatures of all relevant transform functions to return boolean value
which designates whether or not this transform has made a change.
Differential Revision: https://reviews.llvm.org/D51850
Reviewed By: skatkov
llvm-svn: 341893
|
| |
|
|
|
|
| |
I'd made exactly this same change before, but it appears to have been accidentally reverted in another change. (I'm assuming accidental since it was without comment or test case, and in an unrelated change.)
llvm-svn: 341892
|
| |
|
|
| |
llvm-svn: 341837
|
| |
|
|
| |
llvm-svn: 341836
|
| |
|
|
|
|
|
|
|
| |
When GVN propagates an equality by replacing one value with another it also
needs to invalidate the cached information for the value being replaced.
Differential Revision: https://reviews.llvm.org/D51218
llvm-svn: 341820
|
| |
|
|
|
|
|
|
|
|
|
| |
Currently, `rewriteFirstIterationLoopExitValues` does not set Changed flag even if it makes
changes in the IR. There is no clear evidence that it can cause a crash, but it
looks highly suspicious and likely invalid.
Differential Revision: https://reviews.llvm.org/D51779
Reviewed By: skatkov
llvm-svn: 341779
|
| |
|
|
|
|
|
|
|
|
|
| |
Currently, `sinkUnusedInvariants` does not set Changed flag even if it makes
changes in the IR. There is no clear evidence that it can cause a crash, but it
looks highly suspicious and likely invalid.
Differential Revision: https://reviews.llvm.org/D51777
Reviewed By: skatkov
llvm-svn: 341777
|
| |
|
|
|
|
|
|
| |
Laod operand.
Differential Revision: https://reviews.llvm.org/D49151
llvm-svn: 341726
|
| |
|
|
|
|
| |
Use an enum class instead.
llvm-svn: 341684
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently eliminateInstructions only returns true if any instruction got
replaced. In the test case for this patch, we eliminate the trivially
dead calls, for which eliminateInstructions not do a replacement and the
function is not marked as changed, which is why the inliner crashes
while traversing the call graph.
Alternatively we could also change eliminateInstructions to return true
in case we mark instructions for deletion, but that's slightly more code
and doing it at the place where the replacement happens seems safer.
Fixes PR37517.
Reviewers: davide, mcrosier, efriedma, bjope
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D51169
llvm-svn: 341651
|
| |
|
|
|
|
|
|
|
|
|
| |
IndVars does not set `Changed` flag when it eliminates dead instructions. As result,
it may make IR modifications and report that it has done nothing. It leads to inconsistent
preserved analyzes results.
Differential Revision: https://reviews.llvm.org/D51770
Reviewed By: skatkov
llvm-svn: 341633
|
| |
|
|
| |
llvm-svn: 341537
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is no need to create preheaders in the analysis stage, we only
need them when adjusting the branches. Also, the only cases we need to
create our own preheaders is when they have more than 1 predecessors or
PHI nodes (even with only 1 predecessor, we could have an LCSSA phi
node). I have simplified the conditions and added some assertions to be
sure. Because we know the inner and outer loop need to be tightly
nested, it is sufficient to check if the inner loop preheader is the
outer loop header to check if we need to create a new preheader.
Reviewers: efriedma, mcrosier, karthikthecool
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D51703
llvm-svn: 341533
|
| |
|
|
| |
llvm-svn: 341517
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Function rewriteLoopExitValues contains a check on isValidRewrite which
is needed to make sure that SCEV does not convert the pattern
`gep Base, (&p[n] - &p[0])` into `gep &p[n], Base - &p[0]`. This problem
has been fixed in SCEV long ago, so this check is just obsolete.
This patch converts it into an assertion to make sure that the SCEV will
not mess up this case in the future.
Differential Revision: https://reviews.llvm.org/D51582
Reviewed By: atrick
llvm-svn: 341516
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reland r341269. Use std::stable_sort when sorting constant condidates.
Reverting commit, r341365:
Revert r341269: [Constant Hoisting] Hoisting Constant GEP Expressions
One of the tests is failing 50% of the time when expensive checks are
enabled. Not sure how deep the problem is so just reverting while the
author can investigate so that the bots stop repeatedly failing and
blaming things incorrectly. Will respond with details on the original
commit.
Original commit, r341269:
[Constant Hoisting] Hoisting Constant GEP Expressions
Leverage existing logic in constant hoisting pass to transform constant GEP
expressions sharing the same base global variable. Multi-dimensional GEPs are
rewritten into single-dimensional GEPs.
https://reviews.llvm.org/D51396
Differential Revision: https://reviews.llvm.org/D51654
llvm-svn: 341417
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Recent change to deleteDeadBlocksFromLoop was not enough to
fix all the problems related to dead blocks after nontrivial
unswitching of switches.
We need to delete all the dead blocks that were created during
unswitching, otherwise we will keep having problems with phi's
or dead blocks.
This change removes all the dead blocks that are reachable from the loop,
not trying to track whether these blocks are newly created by unswitching
or not. While not completely correct, we are unlikely to get loose but
reachable dead blocks that do not belong to our loop nest.
It does fix all the failures currently known, in particular PR38778.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D51519
llvm-svn: 341398
|
| |
|
|
|
|
|
|
|
|
| |
One of the tests is failing 50% of the time when expensive checks are
enabled. Not sure how deep the problem is so just reverting while the
author can investigate so that the bots stop repeatedly failing and
blaming things incorrectly. Will respond with details on the original
commit.
llvm-svn: 341365
|
| |
|
|
| |
llvm-svn: 341347
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes the function `expandSCEVIfNeeded` which behaves not as
it was intended. This function tries to make a lookup for exact existing expansion
and only goes to normal expansion via `expandCodeFor` if this lookup hasn't found
anything. As a result of this, if some instruction above the loop has a `SCEVConstant`
SCEV, this logic will return this instruction when asked for this `SCEVConstant` rather
than return a constant value. This is both non-profitable and in some cases leads to
breach of LCSSA form (as in PR38674).
Whether or not it is possible to break LCSSA with this algorithm and with some
non-constant SCEVs is still in question, this is still being investigated. I wasn't
able to construct such a test so far, so maybe this situation is impossible. If it is,
it will go as a separate fix.
Rather than do it, it is always correct to just invoke `expandCodeFor` unconditionally:
it behaves smarter about insertion points, and as side effect of this it will choose a
constant value for SCEVConstants. For other SCEVs it may end up finding a better insertion
point. So it should not be worse in any case.
NOTE: So far the only known case for which this transform may break LCSSA is mapping
of SCEVConstant to an instruction. However there is a suspicion that the entire algorithm
can compromise LCSSA form for other cases as well (yet not proved).
Differential Revision: https://reviews.llvm.org/D51286
Reviewed By: etherzhhb
llvm-svn: 341345
|