| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
LLVM makes several assumptions about address space 0. However,
alloca is presently constrained to always return this address space.
There's no real way to avoid using alloca, so without this
there is no way to opt out of these assumptions.
The problematic assumptions include:
- That the pointer size used for the stack is the same size as
the code size pointer, which is also the maximum sized pointer.
- That 0 is an invalid, non-dereferencable pointer value.
These are problems for AMDGPU because alloca is used to
implement the private address space, which uses a 32-bit
index as the pointer value. Other pointers are 64-bit
and behave more like LLVM's notion of generic address
space. By changing the address space used for allocas,
we can change our generic pointer type to be LLVM's generic
pointer type which does have similar properties.
llvm-svn: 299888
|
| |
|
|
|
|
| |
No caller has been passing it for a long time.
llvm-svn: 299827
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
https://llvm.org/bugs/show_bug.cgi?id=31142 :
SROA was dropping the nonnull metadata on loads from allocas that got optimized out. This patch simply preserves nonnull metadata on loads through SROA and mem2reg.
Reviewers: chandlerc, efriedma
Reviewed By: efriedma
Subscribers: hfinkel, spatel, efriedma, arielb1, davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D27114
llvm-svn: 298540
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a function's CFG when that CFG is unchanged.
This allows transformation passes to simply claim they preserve the CFG
and analysis passes to check for the CFG being preserved to remove the
fanout of all analyses being listed in all passes.
I've gone through and removed or cleaned up as many of the comments
reminding us to do this as I could.
Differential Revision: https://reviews.llvm.org/D28627
llvm-svn: 292054
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The LLVM coding standards recommend "using" values that are only
needed by asserts:
http://llvm.org/docs/CodingStandards.html#assert-liberally
Without this change, LLVM cannot bootstrap with -Werror as the second
stage fails with this new warning:
https://reviews.llvm.org/rL291905
See also the previous fixes:
https://reviews.llvm.org/rL291916
https://reviews.llvm.org/rL291939
https://reviews.llvm.org/rL291940
https://reviews.llvm.org/rL291941
Reviewers: rsmith
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28695
llvm-svn: 291957
|
| |
|
|
|
|
| |
... so it becomes available to DIExpressionCursor.
llvm-svn: 290322
|
| |
|
|
|
|
|
| |
This creates non-linear behavior in the inliner (see more details in
r289755's commit thread).
llvm-svn: 290086
|
| |
|
|
|
|
|
|
|
| |
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
llvm-svn: 288683
|
| |
|
|
|
|
|
|
|
|
| |
Now that PointerType is no longer a SequentialType, all SequentialTypes
have an associated number of elements, so we can move that information to
the base class, allowing for a number of simplifications.
Differential Revision: https://reviews.llvm.org/D27122
llvm-svn: 288464
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106640.html
This is for a couple of reasons:
- Values of type PointerType are unlike the other SequentialTypes (arrays
and vectors) in that they do not hold values of the element type. By moving
PointerType we can unify certain aspects of how the other SequentialTypes
are handled.
- PointerType will have no place in the SequentialType hierarchy once
pointee types are removed, so this is a necessary step towards removing
pointee types.
Differential Revision: https://reviews.llvm.org/D26595
llvm-svn: 288462
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
type.
Instead, expose whether the current type is an array or a struct, if an array
what the upper bound is, and if a struct the struct type itself. This is
in preparation for a later change which will make PointerType derive from
Type rather than SequentialType.
Differential Revision: https://reviews.llvm.org/D26594
llvm-svn: 288458
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Preserving lifetime markers isn't as important as allowing promotion,
so just drop the lifetime markers if necessary.
This also fixes an assertion failure where other parts of SROA assumed
that lifetime markers never block promotion.
Fixes https://llvm.org/bugs/show_bug.cgi?id=29139.
Differential Revision: https://reviews.llvm.org/D24854
llvm-svn: 288074
|
| |
|
|
| |
llvm-svn: 286361
|
| |
|
|
| |
llvm-svn: 283004
|
| |
|
|
| |
llvm-svn: 282139
|
| |
|
|
| |
llvm-svn: 281961
|
| |
|
|
|
|
|
|
|
|
|
|
| |
SROA doesn't preserve the llvm.mem.parallel_loop_access metadata when it
transforms loads/stores. This patch fixes a couple occurences of this
issue.
(Partially addresses PR28981).
Differential Revision: https://reviews.llvm.org/D23549
llvm-svn: 281960
|
| |
|
|
|
|
|
|
|
| |
Confirmed with aprantl, this assertion is incorrect - code can get here (for example 80-bit FP types) and if it does it's benign. This is exposed by a completely unrelated patch of mine, so stop the compiler falling over.
Original differential: http://reviews.llvm.org/D16187
aprantl's advice to remove assertion: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160815/382129.html
llvm-svn: 279454
|
| |
|
|
|
|
| |
No functionality change is intended.
llvm-svn: 278475
|
| |
|
|
|
|
| |
No functionality change is intended.
llvm-svn: 278417
|
| |
|
|
|
|
|
|
|
|
|
| |
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278077
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
PromoteMemToReg looks specifically for the pattern
bitcast+lifetime.start (or a bitcast-equivalent GEP); any offset
will lead to an assertion failure.
Fixes https://llvm.org/bugs/show_bug.cgi?id=27999 .
Differential Revision: https://reviews.llvm.org/D22737
llvm-svn: 277969
|
| |
|
|
| |
llvm-svn: 273149
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove dependency of the evalution order of function arguments, which
is unspecified.
The following test previously failed when built with GCC (but succeded
when built with Clang):
; RUN: opt -sroa -S < %s | FileCheck %s
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
%A = type {i16}
@a = global %A* null
@b = global i16 0
; CHECK-LABEL: @f1(
; CHECK: alloca %A
; CHECK-NEXT: extractvalue %A
; CHECK-NEXT: getelementptr inbounds %A
define void @f1 (%A %a) {
%1 = alloca %A
store %A %a, %A* %1
%2 = load i16, i16* @b
%3 = icmp ne i16 %2, 0
br i1 %3, label %bb1, label %bb2
bb1:
store %A* %1, %A** @a
br label %bb2
bb2:
ret void
}
Patch by David Stenberg.
Differential Revision: http://reviews.llvm.org/D21226
llvm-svn: 273144
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D21040
llvm-svn: 272009
|
| |
|
|
|
|
|
|
|
|
|
| |
pointers are
pointing to the same addr space. This can prevent SROA from creating a bitcast
between pointers with different addr spaces.
Differential Revision: http://reviews.llvm.org/D19697
llvm-svn: 268424
|
| |
|
|
| |
llvm-svn: 268421
|
| |
|
|
| |
llvm-svn: 268409
|
| |
|
|
|
|
|
|
|
|
| |
This is required to use this function from isSafeToSpeculativelyExecute
Reviewed By: hfinkel
Differential Revision: http://reviews.llvm.org/D16231
llvm-svn: 267692
|
| |
|
|
|
|
|
|
|
| |
We would report that the function changed despite creating no new
allocas or performing any promotion.
This fixes PR27316.
llvm-svn: 267507
|
| |
|
|
|
|
|
|
|
|
| |
support.
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231
|
| |
|
|
|
|
|
|
| |
This reverts commit r267022, due to an ASan failure:
http://lab.llvm.org:8080/green/job/clang-stage2-cmake-RgSan_check/1549
llvm-svn: 267115
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267022
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Fixes PR26774.
If you're aware of the issue, feel free to skip the "Motivation"
section and jump directly to "This patch".
Motivation:
I define "refinement" as discarding behaviors from a program that the
optimizer has license to discard. So transforming:
```
void f(unsigned x) {
unsigned t = 5 / x;
(void)t;
}
```
to
```
void f(unsigned x) { }
```
is refinement, since the behavior went from "if x == 0 then undefined
else nothing" to "nothing" (the optimizer has license to discard
undefined behavior).
Refinement is a fundamental aspect of many mid-level optimizations done
by LLVM. For instance, transforming `x == (x + 1)` to `false` also
involves refinement since the expression's value went from "if x is
`undef` then { `true` or `false` } else { `false` }" to "`false`" (by
definition, the optimizer has license to fold `undef` to any non-`undef`
value).
Unfortunately, refinement implies that the optimizer cannot assume
that the implementation of a function it can see has all of the
behavior an unoptimized or a differently optimized version of the same
function can have. This is a problem for functions with comdat
linkage, where a function can be replaced by an unoptimized or a
differently optimized version of the same source level function.
For instance, FunctionAttrs cannot assume a comdat function is
actually `readnone` even if it does not have any loads or stores in
it; since there may have been loads and stores in the "original
function" that were refined out in the currently visible variant, and
at the link step the linker may in fact choose an implementation with
a load or a store. As an example, consider a function that does two
atomic loads from the same memory location, and writes to memory only
if the two values are not equal. The optimizer is allowed to refine
this function by first CSE'ing the two loads, and the folding the
comparision to always report that the two values are equal. Such a
refined variant will look like it is `readonly`. However, the
unoptimized version of the function can still write to memory (since
the two loads //can// result in different values), and selecting the
unoptimized version at link time will retroactively invalidate
transforms we may have done under the assumption that the function
does not write to memory.
Note: this is not just a problem with atomics or with linking
differently optimized object files. See PR26774 for more realistic
examples that involved neither.
This patch:
This change introduces a new set of linkage types, predicated as
`GlobalValue::mayBeDerefined` that returns true if the linkage type
allows a function to be replaced by a differently optimized variant at
link time. It then changes a set of IPO passes to bail out if they see
such a function.
Reviewers: chandlerc, hfinkel, dexonsmith, joker.eph, rnk
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18634
llvm-svn: 265762
|
| |
|
|
| |
llvm-svn: 264573
|
| |
|
|
|
|
|
| |
We require C++11 to build, so remove a few remaining preprocessor checks for
'__cplusplus >= 201103L'. This should always be true.
llvm-svn: 264572
|
| |
|
|
|
|
|
|
| |
This reapplies r263258, which was reverted in r263321 because
of issues on Clang side.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263393
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit ae14bf6488e8441f0f6d74f00455555f6f3943ac
Author: Mehdi Amini <mehdi.amini@apple.com>
Date: Fri Mar 11 17:15:50 2016 +0000
Remove PreserveNames template parameter from IRBuilder
Summary:
Following r263086, we are now relying on a flag on the Context to
discard Value names in release builds.
Reviewers: chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18023
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263258
91177308-0d34-0410-b5e6-96231b3b80d8
until we can figure out what to do about clang and Release build testing.
This reverts commit 263258.
llvm-svn: 263321
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Following r263086, we are now relying on a flag on the Context to
discard Value names in release builds.
Reviewers: chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18023
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263258
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Following r263086, we are replacing this by a runtime check.
More cleanup will follow on the IRBuilder itself, but I submitted
this patch separately as SROA has a fancy "prefixInserter" class
that needs extra-love.
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18022
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263256
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.
In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.
llvm-svn: 263219
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
of, and I misdiagnosed for months and months.
Andrea has had a patch for this forever, but I just couldn't see how
it was fixing the root cause of the problem. It didn't make sense to me,
even though the patch was perfectly good and the analysis of the actual
failure event was *fantastic*.
Well, I came back to it today because the patch has sat for *far* too
long and needs attention and decided I wouldn't let it go until I really
understood what was going on. After quite some time in the debugger,
I finally realized that in fact I had just missed an important case with
my previous attempt to fix PR22093 in r225149. Not only do we need to
handle loads that won't be split, but stores-of-loads that we won't
split. We *do* actually have enough logic in the presplitting to form
new slices for split stores.... *unless* we decided not to split them!
I'm so sorry that it took me this long to come to the realization that
this is the issue. It seems so obvious in hind sight (of course).
Anyways, the fix becomes *much* smaller and more focused. The fact that
we're left doing integer smashing is related to the FIXME in my original
commit: fundamentally, we're not aggressive about pre-splitting for
loads and stores to the same alloca. If we want to get aggressive about
this, it'll need both what Andrea had put into the proposed fix, but
also a *lot* more logic to essentially iteratively pre-split the alloca
until we can't do any more. As I said in that commit log, its really
unclear that this is the right call. Instead, the integer blending and
letting targets lower this to narrower stores seems slightly better. But
we definitely shouldn't really go down that path just to fix this bug.
Again, tons of thanks are owed to Andrea and others at Sony for working
on this bug. I really should have seen what was going on here and
re-directed them sooner. =////
llvm-svn: 263121
|
| |
|
|
|
|
|
|
|
|
|
| |
We already have the instruction extracted into 'I', just cast that to
a store the way we do for loads. Also, we don't enter the if unless SI
is non-null, so don't test it again for null.
I'm pretty sure the entire test there can be nuked, but this is just the
trivial cleanup.
llvm-svn: 263112
|
| |
|
|
| |
llvm-svn: 258011
|
| |
|
|
|
|
|
|
| |
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D16226
llvm-svn: 258010
|
| |
|
|
|
|
| |
http://reviews.llvm.org/D10920.
llvm-svn: 257894
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: If SROA creates only one piece (e.g. because the other is not needed),
it still needs to create a bit_piece expression if that bit piece is smaller
than the original size of the alloca.
Reviewers: aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16187
llvm-svn: 257795
|
| |
|
|
| |
llvm-svn: 255511
|
| |
|
|
|
|
|
|
|
|
| |
This reverts commit r253511.
This likely broke the bots in
http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202
http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787
llvm-svn: 253543
|