| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In RS4GC it is possible that a base pointer is contained in a vector that
has undergone a bitcast from one element-pointertype to another. We teach
RS4GC how to look through bitcasts of vector types when looking for a base
pointer.
Reviewers: anna
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38849
llvm-svn: 315694
|
|
|
|
|
|
| |
Use warnings; other minor fixes (NFC).
llvm-svn: 312383
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
It is possible for some passes to materialize a call to a libcall (ex: ldexp, exp2, etc),
but these passes will not mark the call as a gc-leaf-function. All libcalls are
actually gc-leaf-functions, so we change llvm::callsGCLeafFunction() to tell us that
available libcalls are equivalent to gc-leaf-function calls.
Reviewers: sanjoy, anna, reames
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35840
llvm-svn: 309291
|
|
|
|
|
|
| |
suport -> support
llvm-svn: 306968
|
|
|
|
| |
llvm-svn: 306952
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
After RS4GC, we should drop metadata that is no longer valid. These metadata
is used by optimizations scheduled after RS4GC, and can cause a miscompile.
One such metadata is invariant.load which is used by LICM sinking transform.
After rewriting statepoints, the address of a load maybe relocated. With
invariant.load metadata on a load instruction, LICM sinking assumes the
loaded value (from a dererenceable address) to be invariant, and
rematerializes the load operand and the load at the exit block.
This transforms the IR to have an unrelocated use of the
address after a statepoint, which is incorrect.
Other metadata we conservatively remove are related to
dereferenceability and noalias metadata.
This patch drops such metadata on store and load instructions after
rewriting statepoints.
Reviewers: reames, sanjoy, apilipenko
Reviewed by: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33756
llvm-svn: 305234
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
|
|
|
|
|
|
| |
We'd called this "vm state" in the early days, but have long since standardized on calling it "deopt" in line with the operand bundle tag. Fix a few cases we'd missed.
llvm-svn: 304607
|
|
|
|
| |
llvm-svn: 304514
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Do three things to help with that:
- Add AttributeList::FirstArgIndex, which is an enumerator currently set
to 1. It allows us to change the indexing scheme with fewer changes.
- Add addParamAttr/removeParamAttr. This just shortens addAttribute call
sites that would otherwise need to spell out FirstArgIndex.
- Remove some attribute-specific getters and setters from Function that
take attribute list indices. Most of these were only used from
BuildLibCalls, and doesNotAlias was only used to test or set if the
return value is malloc-like.
I'm happy to split the patch, but I think they are probably easier to
review when taken together.
This patch should be NFC, but it sets the stage to change the indexing
scheme to this, which is more convenient when indexing into an array:
0: func attrs
1: retattrs
2...: arg attrs
Reviewers: chandlerc, pete, javed.absar
Subscribers: david2050, llvm-commits
Differential Revision: https://reviews.llvm.org/D32811
llvm-svn: 302060
|
|
|
|
|
|
|
|
|
|
| |
AttributeList"
This time, I fixed, built, and tested clang.
This reverts r301712.
llvm-svn: 301981
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
AttributeList"
This broke the Clang build. (Clang-side patch missing?)
Original commit message:
> [IR] Make add/remove Attributes use AttrBuilder instead of
> AttributeList
>
> This change cleans up call sites and avoids creating temporary
> AttributeList objects.
>
> NFC
llvm-svn: 301712
|
|
|
|
|
|
|
|
|
| |
This change cleans up call sites and avoids creating temporary
AttributeList objects.
NFC
llvm-svn: 301697
|
|
|
|
|
|
|
| |
Avoids use of AttributeList::getNumSlots, making it easier to change the
underlying implementation.
llvm-svn: 301671
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
getArithmeticInstrCost(), getShuffleCost(), getCastInstrCost(),
getCmpSelInstrCost(), getVectorInstrCost(), getMemoryOpCost(),
getInterleavedMemoryOpCost() implemented.
Interleaved access vectorization enabled.
BasicTTIImpl::getCastInstrCost() improved to check for legal extending loads,
in which case the cost of the z/sext instruction becomes 0.
Review: Ulrich Weigand, Renato Golin.
https://reviews.llvm.org/D29631
llvm-svn: 300052
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This re-lands r299875.
I introduced a bug in Clang code responsible for replacing K&R, no
prototype declarations with a real function definition with a prototype.
The bug was here:
// Collect any return attributes from the call.
- if (oldAttrs.hasAttributes(llvm::AttributeList::ReturnIndex))
- newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(),
- oldAttrs.getRetAttributes()));
+ newAttrs.push_back(oldAttrs.getRetAttributes());
Previously getRetAttributes() carried AttributeList::ReturnIndex in its
AttributeList. Now that we return the AttributeSetNode* directly, it no
longer carries that index, and we call this overload with a single node:
AttributeList::get(LLVMContext&, ArrayRef<AttributeSetNode*>)
That aborted with an assertion on x86_32 targets. I added an explicit
triple to the test and added CHECKs to help find issues like this in the
future sooner.
llvm-svn: 299899
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
LLVM makes several assumptions about address space 0. However,
alloca is presently constrained to always return this address space.
There's no real way to avoid using alloca, so without this
there is no way to opt out of these assumptions.
The problematic assumptions include:
- That the pointer size used for the stack is the same size as
the code size pointer, which is also the maximum sized pointer.
- That 0 is an invalid, non-dereferencable pointer value.
These are problems for AMDGPU because alloca is used to
implement the private address space, which uses a 32-bit
index as the pointer value. Other pointers are 64-bit
and behave more like LLVM's notion of generic address
space. By changing the address space used for allocas,
we can change our generic pointer type to be LLVM's generic
pointer type which does have similar properties.
llvm-svn: 299888
|
|
|
|
|
|
|
| |
This reverts r299875. A Linux bot came back with a test failure:
http://bb.pgr.jp/builders/test-clang-i686-linux-RA/builds/741/steps/test_clang/logs/Clang%20%3A%3A%20CodeGen__2006-05-19-SingleEltReturn.c
llvm-svn: 299878
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
AttributeList::get(Fn|Ret|Param)Attributes no longer creates a temporary
AttributeList just to hide the AttributeSetNode type.
I've also added a factory method to create AttributeLists from a
parallel array of AttributeSetNodes. I think this simplifies
construction of AttributeLists when rewriting function prototypes.
Previously we would test if a particular index had attributes, and
conditionally add a temporary attribute list to a vector. Now the
attribute set vector is parallel to the argument vector already that
these passes already construct.
My long term vision is to wrap AttributeSetNode* inside an AttributeSet
type that holds the enum attributes, but that will come in a follow up
change.
I haven't done any performance measurements for this change because
profiling hasn't shown that any of the affected code is hot.
Reviewers: pete, chandlerc, sanjoy, hfinkel
Reviewed By: pete
Subscribers: jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31198
llvm-svn: 299875
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
|
|
|
|
|
|
|
|
|
| |
We were not handling getelemenptr instructions of vector type before.
Since getelemenptr instructions for vector types follow the same rule as
getelementptr instructions for non-vector types, we can just handle them
in the same way.
llvm-svn: 298028
|
|
|
|
|
|
|
| |
With some minor manual fixes for using function_ref instead of
std::function. No functional change intended.
llvm-svn: 291904
|
|
|
|
|
|
|
| |
This creates non-linear behavior in the inliner (see more details in
r289755's commit thread).
llvm-svn: 290086
|
|
|
|
|
|
|
|
|
| |
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
|
|
|
|
|
|
|
| |
We were a little sloppy with adding tailcall markers. Be more
consistent by using setTailCallKind instead of setTailCall.
llvm-svn: 287955
|
|
|
|
| |
llvm-svn: 283449
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch modifies the findBasePointer to handle the shufflevector instruction.
Tests run: RS4GC tests, local downstream tests.
Reviewers: reames, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25197
llvm-svn: 283219
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Reviewers:
Subscribers:
llvm-svn: 282150
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is an NFC refactoring change as a precursor to the actual fix for rematerializing in
presence of phi.
https://reviews.llvm.org/D24399
Pasted from review:
findRematerializableChainToBasePointer changed to return the root of the
chain. instead of true or false.
move the PHI matching logic into the caller by inspecting the root return value.
This includes an assertion that the alternate root is in the liveset for the
call.
Tested with current RS4GC tests.
Reviewers: reames, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24780
llvm-svn: 282023
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
deopt bundles
This is a first step towards supporting deopt value lowering and reporting entirely with the register allocator. I hope to build on this in the near future to support live-on-return semantics, but I have a use case which allows me to test and investigate code quality with just the live-in semantics so I've chosen to start there. For those curious, my use cases is our implementation of the "__llvm_deoptimize" function we bind to @llvm.deoptimize. I'm choosing not to hard code that fact in the patch and instead make it configurable via function attributes.
The basic approach here is modelled on what is done for the "Live In" values on stackmaps and patchpoints. (A secondary goal here is to remove one of the last barriers to merging the pseudo instructions.) We start by adding the operands directly to the STATEPOINT SDNode. Once we've lowered to MI, we extend the remat logic used by the register allocator to fold virtual register uses into StackMap::Indirect entries as needed. This does rely on the fact that the register allocator rematerializes. If it didn't along some code path, we could end up with more vregs than physical registers and fail to allocate.
Today, we *only* fold in the register allocator. This can create some weird effects when combined with arguments passed on the stack because we don't fold them appropriately. I have an idea how to fix that, but it needs this patch in place to work on that effectively. (There's some weird interaction with the scheduler as well, more investigation needed.)
My near term plan is to land this patch off-by-default, experiment in my local tree to identify any correctness issues and then start fixing codegen problems one by one as I find them. Once I have the live-in lowering fully working (both correctness and code quality), I'm hoping to move on to the live-on-return semantics. Note: I don't have any *known* miscompiles with this patch enabled, but I'm pretty sure I'll find at least a couple. Thus, the "experimental" tag and the fact it's off by default.
Differential Revision: https://reviews.llvm.org/D24000
llvm-svn: 280250
|
|
|
|
| |
llvm-svn: 280052
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reverse iterators to doubly-linked lists can be simpler (and cheaper)
than std::reverse_iterator. Make it so.
In particular, change ilist<T>::reverse_iterator so that it is *never*
invalidated unless the node it references is deleted. This matches the
guarantees of ilist<T>::iterator.
(Note: MachineBasicBlock::iterator is *not* an ilist iterator, but a
MachineInstrBundleIterator<MachineInstr>. This commit does not change
MachineBasicBlock::reverse_iterator, but it does update
MachineBasicBlock::reverse_instr_iterator. See note at end of commit
message for details on bundle iterators.)
Given the list (with the Sentinel showing twice for simplicity):
[Sentinel] <-> A <-> B <-> [Sentinel]
the following is now true:
1. begin() represents A.
2. begin() holds the pointer for A.
3. end() represents [Sentinel].
4. end() holds the poitner for [Sentinel].
5. rbegin() represents B.
6. rbegin() holds the pointer for B.
7. rend() represents [Sentinel].
8. rend() holds the pointer for [Sentinel].
The changes are #6 and #8. Here are some properties from the old
scheme (which used std::reverse_iterator):
- rbegin() held the pointer for [Sentinel] and rend() held the pointer
for A;
- operator*() cost two dereferences instead of one;
- converting from a valid iterator to its valid reverse_iterator
involved a confusing increment; and
- "RI++->erase()" left RI invalid. The unintuitive replacement was
"RI->erase(), RE = end()".
With vector-like data structures these properties are hard to avoid
(since past-the-beginning is not a valid pointer), and don't impose a
real cost (since there's still only one dereference, and all iterators
are invalidated on erase). But with lists, this was a poor design.
Specifically, the following code (which obviously works with normal
iterators) now works with ilist::reverse_iterator as well:
for (auto RI = L.rbegin(), RE = L.rend(); RI != RE;)
fooThatMightRemoveArgFromList(*RI++);
Converting between iterator and reverse_iterator for the same node uses
the getReverse() function.
reverse_iterator iterator::getReverse();
iterator reverse_iterator::getReverse();
Why doesn't iterator <=> reverse_iterator conversion use constructors?
In order to catch and update old code, reverse_iterator does not even
have an explicit conversion from iterator. It wouldn't be safe because
there would be no reasonable way to catch all the bugs from the changed
semantic (see the changes at call sites that are part of this patch).
Old code used this API:
std::reverse_iterator::reverse_iterator(iterator);
iterator std::reverse_iterator::base();
Here's how to update from old code to new (that incorporates the
semantic change), assuming I is an ilist<>::iterator and RI is an
ilist<>::reverse_iterator:
[Old] ==> [New]
reverse_iterator(I) (--I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(++I) I.getReverse()
RI.base() (--RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
(++RI).base() RI.getReverse()
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
=======================================
Note: bundle iterators are out of scope
=======================================
MachineBasicBlock::iterator, also known as
MachineInstrBundleIterator<MachineInstr>, is a wrapper to represent
MachineInstr bundles. The idea is that each operator++ takes you to the
beginning of the next bundle. Implementing a sane reverse iterator for
this is harder than ilist. Here are the options:
- Use std::reverse_iterator<MBB::i>. Store a handle to the beginning of
the next bundle. A call to operator*() runs a loop (usually
operator--() will be called 1 time, for unbundled instructions).
Increment/decrement just works. This is the status quo.
- Store a handle to the final node in the bundle. A call to operator*()
still runs a loop, but it iterates one time fewer (usually
operator--() will be called 0 times, for unbundled instructions).
Increment/decrement just works.
- Make the ilist_sentinel<MachineInstr> *always* store that it's the
sentinel (instead of just in asserts mode). Then the bundle iterator
can sniff the sentinel bit in operator++().
I initially tried implementing the end() option as part of this commit,
but updating iterator/reverse_iterator conversion call sites was
error-prone. I have a WIP series of patches that implements the final
option.
llvm-svn: 280032
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
While walking the use chain for identifying rematerializable values in RS4GC,
add the case where the current value and base value are the same PHI nodes.
This will aid rematerialization of geps and casts instead of relocating.
Reviewers: sanjoy, reames, igor
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23920
llvm-svn: 279975
|
|
|
|
|
|
| |
No functionality change is intended.
llvm-svn: 278475
|
|
|
|
|
|
|
|
|
| |
If the result of the find is only used to compare against end(), just
use is_contained instead.
No functionality change is intended.
llvm-svn: 278433
|
|
|
|
|
|
| |
No functionality change is intended.
llvm-svn: 278417
|
|
|
|
|
|
| |
Only minor manual fixes. No functionality change intended.
llvm-svn: 273808
|
|
|
|
| |
llvm-svn: 273805
|
|
|
|
| |
llvm-svn: 273800
|
|
|
|
| |
llvm-svn: 273799
|
|
|
|
| |
llvm-svn: 273798
|
|
|
|
| |
llvm-svn: 273797
|
|
|
|
| |
llvm-svn: 273796
|
|
|
|
| |
llvm-svn: 273795
|
|
|
|
| |
llvm-svn: 273794
|
|
|
|
| |
llvm-svn: 273793
|
|
|
|
|
|
| |
All of its implementation is in just one function.
llvm-svn: 273792
|
|
|
|
|
|
|
| |
Name-casing and minor style changes to bring the function up to the LLVM
coding style.
llvm-svn: 273791
|
|
|
|
| |
llvm-svn: 273523
|
|
|
|
|
|
| |
Spotted during random inspection.
llvm-svn: 273512
|