| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
This reverts commit 51ef53f3bd23559203fe9af82ff2facbfedc1db3, as it
breaks some bots.
|
|
|
|
|
|
|
|
|
|
|
|
| |
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.
Reviewers: sanjoy.google, efriedma, reames
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D71537
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
separately in loop-vectorize
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.
So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.
For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.
It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.
Differential revision: https://reviews.llvm.org/D67148
llvm-svn: 374634
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
separately in loop-vectorize"
Also Revert "[LoopVectorize] Fix non-debug builds after rL374017"
This reverts commit 9f41deccc0e648a006c9f38e11919f181b6c7e0a.
This reverts commit 18b6fe07bcf44294f200bd2b526cb737ed275c04.
The patch is breaking PowerPC internal build, checked with author, reverting
on behalf of him for now due to timezone.
llvm-svn: 374091
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
in loop-vectorize
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.
So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.
For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.
It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.
Differential revision: https://reviews.llvm.org/D67148
llvm-svn: 374017
|
|
|
|
|
|
| |
Add assertions to make it clear that GenerateIVChain / NarrowSearchSpaceByPickingWinnerRegs should succeed in finding non-null values
llvm-svn: 372518
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
|
|
|
|
|
|
|
|
| |
loop pass
Differential Revision: https://reviews.llvm.org/D64795
llvm-svn: 366976
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch applies clang-tidy's bugprone-argument-comment tool
to LLVM, clang and lld source trees. Here is how I created this
patch:
$ git clone https://github.com/llvm/llvm-project.git
$ cd llvm-project
$ mkdir build
$ cd build
$ cmake -GNinja -DCMAKE_BUILD_TYPE=Debug \
-DLLVM_ENABLE_PROJECTS='clang;lld;clang-tools-extra' \
-DCMAKE_EXPORT_COMPILE_COMMANDS=On -DLLVM_ENABLE_LLD=On \
-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ../llvm
$ ninja
$ parallel clang-tidy -checks='-*,bugprone-argument-comment' \
-config='{CheckOptions: [{key: StrictMode, value: 1}]}' -fix \
::: ../llvm/lib/**/*.{cpp,h} ../clang/lib/**/*.{cpp,h} ../lld/**/*.{cpp,h}
llvm-svn: 366177
|
|
|
|
|
|
|
| |
This fixes pr42492.
Differential Revision: https://reviews.llvm.org/D64124
llvm-svn: 365104
|
|
|
|
|
|
|
|
|
| |
loop.
Differential Revision: https://reviews.llvm.org/D63477
llvm-svn: 364993
|
|
|
|
|
|
| |
Changing the threshold might not be the best long term approach. Revert for now.
llvm-svn: 360589
|
|
|
|
|
|
|
|
|
|
| |
The original change introduced a depth limit of 7 which caused a 22% regression
in the Swift MapReduceLazyCollection & Ackermann benchmarks. This new threshold
still ensures that the original test case doesn't hang.
rdar://50359639
llvm-svn: 360444
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some circumstances we can end up with setup costs that are very complex to
compute, even though the scevs are not very complex to create. This can also
lead to setupcosts that are calculated to be exactly -1, which LSR treats as an
invalid cost. This patch puts a limit on the recursion depth for setup cost to
prevent them taking too long.
Thanks to @reames for the report and test case.
Differential Revision: https://reviews.llvm.org/D60944
llvm-svn: 358958
|
|
|
|
|
| |
Change-Id: I4d85123a157d957434902fb14ba50926b2d56212
llvm-svn: 358619
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If LSR split critical edge during rewriting phi operands and
phi node has other pending fixup operands, we need to
update those pending fixups. Otherwise formulae will not be
implemented completely and some instructions will not be eliminated.
llvm.org/PR41445
Differential Revision: https://reviews.llvm.org/D60645
Patch by: Denis Bakhvalov <denis.bakhvalov@intel.com>
llvm-svn: 358457
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For the attached test case, unchecked addition of immediate starts and
ends overflows, as they can be arbitrary i64 constants.
Proof: https://rise4fun.com/Alive/Plqc
Reviewers: qcolombet, gilr, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D59218
llvm-svn: 357217
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We are adding a sign extended IR value to an int64_t, which can cause
signed overflows, as in the attached test case, where we have a formula
with BaseOffset = -1 and a constant with numeric_limits<int64_t>::min().
If the addition would overflow, skip the simplification for this
formula. Note that the target triple is required to trigger the failure.
Reviewers: qcolombet, gilr, kparzysz, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D59211
llvm-svn: 356256
|
|
|
|
|
|
| |
Remove unused private field.
llvm-svn: 356135
|
|
|
|
|
|
|
|
|
| |
Create members for Loop, ScalarEvolution, DominatorTree,
TargetTransformInfo and Formula.
Differential Revision: https://reviews.llvm.org/D58389
llvm-svn: 356131
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some loops, we end up generating loop induction variables that look like:
{(-1 * (zext i16 (%i0 * %i1) to i32))<nsw>,+,1}
As opposed to the simpler:
{(zext i16 (%i0 * %i1) to i32),+,-1}
i.e we count up from -limit to 0, not the simpler counting down from limit to
0. This is because the scores, as LSR calculates them, are the same and the
second is filtered in place of the first. We end up with a redundant SUB from 0
in the code.
This patch tries to make the calculation of the setup cost a little more
thoroughly, recursing into the scev members to better approximate the setup
required. The cost function for comparing LSR costs is:
return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
C2.ScaleCost, C2.ImmCost, C2.SetupCost);
So this will only alter results if none of the other variables turn out to be
different.
Differential Revision: https://reviews.llvm.org/D58770
llvm-svn: 355597
|
|
|
|
| |
llvm-svn: 353801
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Modify GenerateConstantOffsetsImpl to create offsets that can be used
by indexed addressing modes. If formulae can be generated which
result in the constant offset being the same size as the recurrence,
we can generate a pre-indexed access. This allows the pointer to be
updated via the single pre-indexed access so that (hopefully) no
add/subs are required to update it for the next iteration. For small
cores, this can significantly improve performance DSP-like loops.
Differential Revision: https://reviews.llvm.org/D55373
llvm-svn: 353403
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When LSR first adds SCEVs to BaseRegs, it only does it if `isZero()` has
returned false. In the end, in invocation of `InsertFormula`, it asserts that
all values there are still not zero constants. However between these two
points, it makes some transformations, in particular extends them to wider
type.
SCEV does not give us guarantee that if `S` is not a constant zero, then
`sext(S)` is also not a constant zero. It might have missed some optimizing
transforms when it was calculating `S` and then made them when it took `sext`.
For example, it may happen if previously optimizing transforms were limited
by depth or somehow else.
This patch adds a bailout when we may end up with a zero SCEV after extension.
Differential Revision: https://reviews.llvm.org/D57565
Reviewed By: samparker
llvm-svn: 353136
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
|
|
|
|
|
|
|
| |
Convert ComplexityLimit into a command line value.
Differential Revision: https://reviews.llvm.org/D54899
llvm-svn: 347843
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
LSR reassociates constants as unfolded offsets when the constants fit as
immediate add operands, which currently prevents such constants from being
combined later with loop invariant registers.
This patch modifies GenerateCombinations() to generate a second formula which
includes the unfolded offset in the combined loop-invariant register.
This commit fixes a bug in the original patch (committed at r345114, reverted
at r345123).
Differential Revision: https://reviews.llvm.org/D51861
llvm-svn: 346390
|
|
|
|
|
|
| |
Investigating fails.
llvm-svn: 345123
|
|
|
|
|
|
|
|
|
|
|
|
| |
LSR reassociates constants as unfolded offsets when the constants fit as
immediate add operands, which currently prevents such constants from being
combined later with loop invariant registers.
This patch modifies GenerateCombinations() to generate a second formula which
includes the unfolded offset in the combined loop-invariant register.
Differential Revision: https://reviews.llvm.org/D51861
llvm-svn: 345114
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: The convenience wrapper in STLExtras is available since rL342102.
Reviewers: dblaikie, javed.absar, JDevlieghere, andreadb
Subscribers: MatzeB, sanjoy, arsenm, dschuff, mehdi_amini, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, javed.absar, gbedwell, jrtc27, mgrang, atanasyan, steven_wu, george.burgess.iv, dexonsmith, kristina, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D52573
llvm-svn: 343163
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
By looking at the callers of getUse(), we can see that even though
IVUsers may offer uses, but they may not be interesting to
LSR. It's possible that none of them is interesting.
Reviewers: sanjoy
Subscribers: jlebar, hiraditya, bixia, llvm-commits
Differential Revision: https://reviews.llvm.org/D49049
llvm-svn: 337072
|
|
|
|
| |
llvm-svn: 334687
|
|
|
|
|
|
|
|
|
|
|
| |
r334209 description:
[LSR] Check yet more intrinsic pointer operands
the patch fixes another assertion in isLegalUse()
Differential Revision: https://reviews.llvm.org/D47794
llvm-svn: 334300
|
|
|
|
|
|
|
| |
This causes cast failures when compiling harfbuzz in Chromium.
Reproducer on the way.
llvm-svn: 334254
|
|
|
|
|
|
|
|
| |
the patch fixes another assertion in isLegalUse()
Differential Revision: https://reviews.llvm.org/D47794
llvm-svn: 334209
|
|
|
|
|
|
|
|
|
|
| |
Review feedback from r328165. Split out just the one function from the
file that's used by Analysis. (As chandlerc pointed out, the original
change only moved the header and not the implementation anyway - which
was fine for the one function that was used (since it's a
template/inlined in the header) but not in general)
llvm-svn: 333954
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Limit number of reassociations in GenerateReassociationsImpl.
Reviewers: qcolombet, mkazantsev
Differential Revision: https://reviews.llvm.org/D46039
From: Evgeny Stupachenko <evstupac@gmail.com>
<evgeny.v.stupachenko@intel.com>
llvm-svn: 332426
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer the comments section in D44363 for a list of all the required patches.
Reviewers: kcc, pcc, danielcdh, jmolloy, sanjoy, dberlin, ruiu
Reviewed By: ruiu
Subscribers: ruiu, llvm-commits
Differential Revision: https://reviews.llvm.org/D45142
llvm-svn: 330059
|
|
|
|
|
|
|
|
|
| |
declarations amongst Scalar.h and IPO.h
Fixes layering - Transforms/Utils shouldn't depend on including a Scalar
or IPO header, because Scalar and IPO depend on Utils.
llvm-svn: 328717
|
|
|
|
|
|
|
|
|
|
|
| |
Implement TTI interface for targets to indicate that the LSR should give
priority to post-incrementing addressing modes.
Combination of patches by Sebastian Pop and Brendon Cahoon.
Differential Revision: https://reviews.llvm.org/D44758
llvm-svn: 328490
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
|
|
|
|
|
|
|
|
| |
This reverts commit r324943.
Breaking bots, reverting for Gerolf.
llvm-svn: 324958
|
|
|
|
| |
llvm-svn: 324943
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(PR35681)
In the motivating case from PR35681 and represented by the macro-fuse-cmp test:
https://bugs.llvm.org/show_bug.cgi?id=35681
...there's a 37 -> 31 byte size win for the loop because we eliminate the big base
address offsets.
SPEC2017 on Ryzen shows no significant perf difference.
Differential Revision: https://reviews.llvm.org/D42607
llvm-svn: 324289
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Before emitting code for scaled registers, we prevent
SCEVExpander from hoisting any scaled addressing mode
by emitting all the bases first. However, these bases
are being forced to the final type, resulting in some
odd code.
For example, if the type of the base is an integer and
the final type is a pointer, we will emit an inttoptr
for the base, a ptrtoint for the scale, and then a
'reverse' GEP where the GEP pointer is actually the base
integer and the index is the pointer. It's more intuitive
to use the pointer as a pointer and the integer as index.
Patch by: Bevin Hansson
Reviewers: atrick, qcolombet, sanjoy
Reviewed By: qcolombet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42103
llvm-svn: 323946
|
|
|
|
|
|
| |
Fix confusing typo in comment.
llvm-svn: 322765
|