summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp
Commit message (Collapse)AuthorAgeFilesLines
* Revert @llvm.assume with operator bundles (r289755-r289757)Daniel Jasper2016-12-191-0/+1
| | | | | | | This creates non-linear behavior in the inliner (see more details in r289755's commit thread). llvm-svn: 290086
* Remove the AssumptionCacheHal Finkel2016-12-151-1/+0
| | | | | | | | | After r289755, the AssumptionCache is no longer needed. Variables affected by assumptions are now found by using the new operand-bundle-based scheme. This new scheme is more computationally efficient, and also we need much less code... llvm-svn: 289756
* Consistently use LoopAnalysisManagerSean Silva2016-08-091-1/+1
| | | | | | | | | | | | | | | | | One exception here is LoopInfo which must forward-declare it (because the typedef is in LoopPassManager.h which depends on LoopInfo). Also, some includes for LoopPassManager.h were needed since that file provides the typedef. Besides a general consistently benefit, the extra layer of indirection allows the mechanical part of https://reviews.llvm.org/D23256 that requires touching every transformation and analysis to be factored out cleanly. Thanks to David for the suggestion. llvm-svn: 278079
* LoopSimplifyCFG: Prefer `const auto &` to `auto &`, for clarity. NFCJustin Bogner2016-06-171-1/+2
| | | | llvm-svn: 273023
* [PM] Port of the DepndenceAnalysis to the new PM.Chandler Carruth2016-05-121-1/+1
| | | | | | | | | | | | | Ported DA to the new PM by splitting the former DependenceAnalysis Pass into a DependenceInfo result type and DependenceAnalysisWrapperPass type and adding a new PM-style DependenceAnalysis analysis pass returning the DependenceInfo. Patch by Philip Pfaffe, most of the review by Justin. Differential Revision: http://reviews.llvm.org/D18834 llvm-svn: 269370
* PM: Port LoopSimplifyCFG to the new pass managerJustin Bogner2016-05-031-42/+55
| | | | llvm-svn: 268446
* Re-commit optimization bisect support (r267022) without new pass manager ↵Andrew Kaylor2016-04-221-1/+1
| | | | | | | | | | support. The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling). Differential Revision: http://reviews.llvm.org/D19172 llvm-svn: 267231
* Revert "Initial implementation of optimization bisect support."Vedant Kumar2016-04-221-1/+1
| | | | | | | | This reverts commit r267022, due to an ASan failure: http://lab.llvm.org:8080/green/job/clang-stage2-cmake-RgSan_check/1549 llvm-svn: 267115
* Initial implementation of optimization bisect support.Andrew Kaylor2016-04-211-1/+1
| | | | | | | | | | | | This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations. The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used. The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way. Differential Revision: http://reviews.llvm.org/D19172 llvm-svn: 267022
* [LPM] Factor all of the loop analysis usage updates into a common helperChandler Carruth2016-02-191-14/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | routine. We were getting this wrong in small ways and generally being very inconsistent about it across loop passes. Instead, let's have a common place where we do this. One minor downside is that this will require some analyses like SCEV in more places than they are strictly needed. However, this seems benign as these analyses are complete no-ops, and without this consistency we can in many cases end up with the legacy pass manager scheduling deciding to split up a loop pass pipeline in order to run the function analysis half-way through. It is very, very annoying to fix these without just being very pedantic across the board. The only loop passes I've not updated here are ones that use AU.setPreservesAll() such as IVUsers (an analysis) and the pass printer. They seemed less relevant. With this patch, almost all of the problems in PR24804 around loop pass pipelines are fixed. The one remaining issue is that we run simplify-cfg and instcombine in the middle of the loop pass pipeline. We've recently added some loop variants of these passes that would seem substantially cleaner to use, but this at least gets us much closer to the previous state. Notably, the seven loop pass managers is down to three. I've not updated the loop passes using LoopAccessAnalysis because that analysis hasn't been fully wired into LoopSimplify/LCSSA, and it isn't clear that those transforms want to support those forms anyways. They all run late anyways, so this is harmless. Similarly, LSR is left alone because it already carefully manages its forms and doesn't need to get fused into a single loop pass manager with a bunch of other loop passes. LoopReroll didn't use loop simplified form previously, and I've updated the test case to match the trivially different output. Finally, I've also factored all the pass initialization for the passes that use this technique as well, so that should be done regularly and reliably. Thanks to James for the help reviewing and thinking about this stuff, and Ben for help thinking about it as well! Differential Revision: http://reviews.llvm.org/D17435 llvm-svn: 261316
* Fix typo in LoopSimplifyCFGFiona Glaser2016-01-291-1/+1
| | | | llvm-svn: 259261
* Add LoopSimplifyCFG passFiona Glaser2016-01-291-0/+111
Loop transformations can sometimes fail because the loop, while in valid rotated LCSSA form, is not in a canonical CFG form. This is an extremely simple pass that just merges obviously redundant blocks, which can be used to fix some known failure cases. In the future, it may be enhanced with more cases (and have code shared with SimplifyCFG). This allows us to run LoopSimplifyCFG -> LoopRotate -> LoopUnroll, so that SimplifyCFG cleans up the loop before Rotate tries to run. Not currently used in the pass manager, since this pass doesn't do anything unless you can hook it up in an LPM with other loop passes. It'll be added once Chandler cleans up things to allow this. Tested in a custom pipeline out of tree to confirm it works in practice (in addition to the included trivial test). llvm-svn: 259256
OpenPOWER on IntegriCloud