| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
| |
If the result of the find is only used to compare against end(), just
use is_contained instead.
No functionality change is intended.
llvm-svn: 278433
|
|
|
|
|
|
|
|
|
|
|
| |
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278077
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The correctness fix here is that when we CSE a load with another load,
we need to combine the metadata on the two loads. This matches the
behavior of other passes, like instcombine and GVN.
There's also a minor optimization improvement here: for load PRE, the
aliasing metadata on the inserted load should be the same as the
metadata on the original load. Not sure why the old code was throwing
it away.
Issue found by inspection.
Differential Revision: http://reviews.llvm.org/D21460
llvm-svn: 277977
|
|
|
|
|
|
|
|
|
| |
Just because we can constant fold the result of an instruction does not
imply that we can delete the instruction. It may have side effects.
This fixes PR28655.
llvm-svn: 276389
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Extend JumpThreading's PRE to unordered atomic loads.
Reviewers: hfinkel, reames
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D22326
llvm-svn: 275456
|
|
|
|
| |
llvm-svn: 275346
|
|
|
|
|
|
|
|
|
|
| |
We were still crashing in the "no change" case because LVI was not
getting invalidated.
See the thread "Should analyses be able to hold AssertingVH to IR?
(related to PR28400)" for more discussion.
llvm-svn: 274656
|
|
|
|
|
|
|
|
|
| |
PR28400 seems to be not an isolated issue, but a general problem related
to caching analyses. We will need to discuss on llvm-dev.
A test case is in the PR.
llvm-svn: 274457
|
|
|
|
| |
llvm-svn: 274440
|
|
|
|
|
|
|
|
|
|
| |
r273711 was reverted by r273743. The inliner needs to know about any
call sites in the inlined function. These were obscured if we replaced
a call to undef with an undef but kept the call around.
This fixes PR28298.
llvm-svn: 273753
|
|
|
|
| |
llvm-svn: 273743
|
|
|
|
|
|
|
| |
We cannot remove an instruction with no uses just because
SimplifyInstruction succeeds. It may have side effects.
llvm-svn: 273711
|
|
|
|
|
|
|
|
| |
BranchProbabilityInfo"
It was causing failures in Profile-i386 and Profile-x86_64 tests.
llvm-svn: 272912
|
|
|
|
|
|
|
|
|
| |
We should update results of the BranchProbabilityInfo after removing block in JumpThreading. Otherwise
we will get dangling pointer inside BranchProbabilityInfo cache.
Differential Revision: http://reviews.llvm.org/D20957
llvm-svn: 272891
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit r272603 and adds a fix.
Big thanks to Davide for pointing me at r216244 which gives some insight
into how to fix this VS2013 issue. VS2013 can't synthesize a move
constructor. So the fix here is to add one explicitly to the
JumpThreadingPass class.
llvm-svn: 272607
|
|
|
|
|
|
|
|
| |
This reverts commit r272597.
Will investigate issue with VS2013 compilation and then recommit.
llvm-svn: 272603
|
|
|
|
|
|
|
|
|
|
|
|
| |
This follows the approach in r263208 (for GVN) pretty closely:
- move the bulk of the body of the function to the new PM class.
- expose a runImpl method on the new-PM class that takes the IRUnitT and
pointers/references to any analyses and use that to implement the
old-PM class.
- use a private namespace in the header for stuff that used to be file
scope
llvm-svn: 272597
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a bit gnarly since LVI is maintaining its own cache.
I think this port could be somewhat cleaner, but I'd rather not spend
too much time on it while we still have the old pass hanging around and
limiting how much we can clean things up.
Once the old pass is gone it will be easier (less time spent) to clean
it up anyway.
This is the last dependency needed for porting JumpThreading which I'll
do in a follow-up commit (there's no printer pass for LVI or anything to
test it, so porting a pass that depends on it seems best).
I've been mostly following:
r269370 / D18834 which ported Dependence Analysis
r268601 / D19839 which ported BPI
llvm-svn: 272593
|
|
|
|
| |
llvm-svn: 267430
|
|
|
|
|
|
|
|
|
|
| |
support.
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231
|
|
|
|
|
|
|
|
| |
This reverts commit r267022, due to an ASan failure:
http://lab.llvm.org:8080/green/job/clang-stage2-cmake-RgSan_check/1549
llvm-svn: 267115
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267022
|
|
|
|
|
|
| |
Phabricator Revision: http://reviews.llvm.org/D19277
llvm-svn: 266904
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
operands.
This patch improves SimplifyCFG to catch cases like:
if (a < b) {
if (a > b) <- known to be false
unreachable;
}
Phabricator Revision: http://reviews.llvm.org/D18905
llvm-svn: 266767
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
especially for nested loops
When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes
is currently used to recognize potential loops of which the block is the header and keep the block.
However, the current algorithm fails if the loops' exit condition is evaluated only with volatile
values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested
loop, the loop is collapsed into a single loop which prevent later optimizations from being
applied (e.g., transforming nested loops into simplified forms and loop vectorization).
The patch augments the existing PHI node-based check by adding a pre-test if the BB actually
belongs to a set of loop headers and not eliminating it if yes.
llvm-svn: 264697
|
|
|
|
|
|
|
|
|
|
| |
structure, especially for nested loops"
This reverts commit r264596.
It does not compile.
llvm-svn: 264604
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
especially for nested loops
When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes
is currently used to recognize potential loops of which the block is the header and keep the block.
However, the current algorithm fails if the loops' exit condition is evaluated only with volatile
values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested
loop, the loop is collapsed into a single loop which prevent later optimizations from being
applied (e.g., transforming nested loops into simplified forms and loop vectorization).
The patch augments the existing PHI node-based check by adding a pre-test if the BB actually
belongs to a set of loop headers and not eliminating it if yes.
llvm-svn: 264596
|
|
|
|
|
|
| |
To capture more jump-thread opportunity.
llvm-svn: 263618
|
|
|
|
|
|
|
|
| |
ComputeValueKnownInPredecessors()"
Not sure it handles undef properly.
llvm-svn: 263605
|
|
|
|
|
|
| |
This change tries to find more opportunities to thread over basic blocks.
llvm-svn: 261981
|
|
|
|
|
|
|
|
|
| |
Change a return statement of ComputeValueKnownInPredecessors() to be the same as
the rest return statements of the function. Otherwise, it might return true with
an empty Result when the current basic block has no predecessors and trigger the
first assert of JumpThreading::ProcessThreadableEdges().
llvm-svn: 260110
|
|
|
|
|
|
|
|
|
|
|
|
| |
of just the pointer.
Reviewers: mjacob, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16422
llvm-svn: 258477
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
JumpThreading's runOnFunction is supposed to return true if it made any
changes. JumpThreading has a call to removeUnreachableBlocks which may
result in changes to the IR but runOnFunction didn't appropriate account
for this possibility, leading to badness.
While we are here, make sure to call LazyValueInfo::eraseBlock in
removeUnreachableBlocks; JumpThreading preserves LVI.
This fixes PR26096.
llvm-svn: 257279
|
|
|
|
|
|
| |
No functionality change intended.
llvm-svn: 257262
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PHI node
Look for PHI/Select in the same BB of the form
bb:
%p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
%s = select p, trueval, falseval
And expand the select into a branch structure. This later enables
jump-threading over bb in this pass.
Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
select if the associated PHI has at least one constant. If the unfolded
select is not jump-threaded, it will be folded again in the later
optimizations.
llvm-svn: 257198
|
|
|
|
|
|
|
|
|
|
|
|
| |
The code that was meant to adjust the duplication cost based on the
terminator opcode was not being executed in cases where the initial
threshold was hit inside the loop.
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D15536
llvm-svn: 256568
|
|
|
|
|
|
| |
r256263.
llvm-svn: 256303
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes all weight-related interfaces from BPI and replace
them by probability versions. With this patch, we won't use edge weight
anymore in either IR or MC passes. Edge probabilitiy is a better
representation in terms of CFG update and validation.
Differential revision: http://reviews.llvm.org/D15519
llvm-svn: 256263
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change makes the `isImpliedCondition` interface similar to the rest
of the functions in ValueTracking (in that it takes a DataLayout,
AssumptionCache etc.). This is an NFC, intended to make a later diff
less noisy.
Depends on D14369
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14391
llvm-svn: 252333
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If P branches to Q conditional on C and Q branches to R conditional on
C' and C => C' then the branch conditional on C' can be folded to an
unconditional branch.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13972
llvm-svn: 251557
|
|
|
|
|
|
| |
Our internal bot is still red after r250366.
llvm-svn: 250415
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With r250345 and r250343, we start to observe the following failure
when bootstrap clang with lto and pgo:
PHI node entries do not match predecessors!
%.sroa.029.3.i = phi %"class.llvm::SDNode.13298"* [ null, %30953 ], [ null, %31017 ], [ null, %30998 ], [ null, %_ZN4llvm8dyn_castINS_14ConstantSDNodeENS_7SDValueEEENS_10cast_rettyIT_T0_E8ret_typeERS5_.exit.i.1804 ], [ null, %30975 ], [ null, %30991 ], [ null, %_ZNK4llvm3EVT13getScalarTypeEv.exit.i.1812 ], [ %..sroa.029.0.i, %_ZN4llvm11SmallVectorIiLj8EED1Ev.exit.i.1826 ], !dbg !451895
label %30998
label %_ZNK4llvm3EVTeqES0_.exit19.thread.i
LLVM ERROR: Broken function found, compilation aborted!
I will re-commit this if the bot does not recover.
llvm-svn: 250366
|
|
|
|
|
|
|
|
|
|
| |
Currently in JumpThreading pass, the branch weight metadata is not updated after CFG modification. Consider the jump threading on PredBB, BB, and SuccBB. After jump threading, the weight on BB->SuccBB should be adjusted as some of it is contributed by the edge PredBB->BB, which doesn't exist anymore. This patch tries to update the edge weight in metadata on BB->SuccBB by scaling it by 1 - Freq(PredBB->BB) / Freq(BB->SuccBB).
This is the third attempt to submit this patch, while the first two led to failures in some FDO tests. After investigation, it is the edge weight normalization that caused those failures. In this patch the edge weight normalization is fixed so that there is no zero weight in the output and the sum of all weights can fit in 32-bit integer. Several unit tests are added.
Differential revision: http://reviews.llvm.org/D10979
llvm-svn: 250345
|
|
|
|
| |
llvm-svn: 250264
|
|
|
|
|
|
|
|
| |
Currently in JumpThreading pass, the branch weight metadata is not updated after CFG modification. Consider the jump threading on PredBB, BB, and SuccBB. After jump threading, the weight on BB->SuccBB should be adjusted as some of it is contributed by the edge PredBB->BB, which doesn't exist anymore. This patch tries to update the edge weight in metadata on BB->SuccBB by scaling it by 1 - Freq(PredBB->BB) / Freq(BB->SuccBB).
Differential revision: http://reviews.llvm.org/D10979
llvm-svn: 250204
|
|
|
|
|
|
|
| |
Remove some of the implicit ilist iterator conversions in
LLVMScalarOpts. More to go.
llvm-svn: 250197
|
|
|
|
| |
llvm-svn: 250145
|
|
|
|
|
|
|
|
| |
In JumpThreading pass, the branch weight metadata is not updated after CFG modification. Consider the jump threading on PredBB, BB, and SuccBB. After jump threading, the weight on BB->SuccBB should be adjusted as some of it is contributed by the edge PredBB->BB, which doesn't exist anymore. This patch tries to update the edge weight in metadata on BB->SuccBB by scaling it by 1 - Freq(PredBB->BB) / Freq(BB->SuccBB).
Differential revision: http://reviews.llvm.org/D10979
llvm-svn: 250089
|
|
|
|
|
|
| |
FindAvailableLoadedValue()'s parameter MaxInstsToScan. (Complete version of r247497. See D12886)
llvm-svn: 248022
|
|
|
|
| |
llvm-svn: 247793
|