| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
attributes (Step 1)
Summary:
This is a resurrection of work first proposed and discussed in Aug 2015:
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
and initially landed (but then backed out) in Nov 2015:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.
This change is the first in a series that allows source and dest to each
have their own alignments by using the alignment attribute on their arguments.
In this change we:
1) Remove the alignment argument.
2) Add alignment attributes to the source & dest arguments. We, temporarily,
require that the alignments for source & dest be equal.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)
Downstream users may have to update their lit tests that check for
@llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script
may help with updating the majority of your tests, but it does not catch all possible
patterns so some manual checking and updating will be required.
s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g
The remaining changes in the series will:
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments.
Step 3) Update Clang to use the new IRBuilder API.
Step 4) Update Polly to use the new IRBuilder API.
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use
getDestAlignment() and getSourceAlignment() instead.
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reviewers: pete, hfinkel, lhames, reames, bollu
Reviewed By: reames
Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits
Differential Revision: https://reviews.llvm.org/D41675
llvm-svn: 322965
|
|
|
|
|
|
|
|
|
|
| |
Three (or more) operand getelementptrs could plausibly also be handled, but
handling only two-operand fits in easily with the existing BinaryOperator
handling.
Differential Revision: https://reviews.llvm.org/D39958
llvm-svn: 322930
|
|
|
|
|
|
|
|
|
| |
I was comparing the demanded-bits implementations between InstCombine
and TargetLowering as part of investigating questions in D42088 and
noticed that this was wrong in IR. We were losing all of the prior
known bits when we got back to the 'zext'.
llvm-svn: 322662
|
|
|
|
|
|
|
|
|
|
|
| |
a Constant
Summary:
In preparation for https://reviews.llvm.org/D41675 this NFC changes this
prototype of MemIntrinsicInst::setAlignment() to accept an unsigned instead
of a Constant.
llvm-svn: 322403
|
|
|
|
| |
llvm-svn: 322285
|
|
|
|
|
|
|
|
|
|
|
| |
parent function
Ideally we should merge the attributes from the functions somehow, but
this is obviously an improvement over taking random attributes from the
caller which will trip up the verifier if they're nonsensical for an
unary intrinsic call.
llvm-svn: 322284
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This patch enables folding sin(x) / cos(x) -> tan(x), cos(x) / sin(x) -> 1 / tan(x) under -ffast-math flag
Reviewers: hfinkel, spatel
Reviewed By: spatel
Subscribers: andrew.w.kaylor, efriedma, scanon, llvm-commits
Differential Revision: https://reviews.llvm.org/D41286
llvm-svn: 322255
|
|
|
|
|
|
|
|
|
| |
Because of potential UB (known bits conflicts with an llvm.assume),
we have to check rather than assert here because InstSimplify doesn't
kill the compare:
https://bugs.llvm.org/show_bug.cgi?id=35846
llvm-svn: 322104
|
|
|
|
|
|
|
|
| |
getZExtValue
Reduced from oss-fuzz #5032 test case
llvm-svn: 322078
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is precedence for factorization transforms in instcombine for FP ops with fast-math.
We also have similar logic in foldSPFofSPF().
It would take more work to add this to reassociate because that's specialized for binops,
and min/max are not binops (or even single instructions). Also, I don't have evidence that
larger min/max trees than this exist in real code, but if we find that's true, we might
want to reorganize where/how we do this optimization.
In the motivating example from https://bugs.llvm.org/show_bug.cgi?id=35717 , we have:
int test(int xc, int xm, int xy) {
int xk;
if (xc < xm)
xk = xc < xy ? xc : xy;
else
xk = xm < xy ? xm : xy;
return xk;
}
This patch solves that problem because we recognize more min/max patterns after rL321672
https://rise4fun.com/Alive/Qjne
https://rise4fun.com/Alive/3yg
Differential Revision: https://reviews.llvm.org/D41603
llvm-svn: 321998
|
|
|
|
|
|
|
|
|
|
|
| |
In the minimal case, this won't remove instructions, but it still improves
uses of existing values.
In the motivating example from PR35834, it does remove instructions, and
sets that case up to be optimized by something like D41603:
https://reviews.llvm.org/D41603
llvm-svn: 321936
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Besides the bug of omitting the inverse transform of max(~a, ~b) --> ~min(a, b),
the use checking and operand creation were off. We were potentially creating
repeated identical instructions of existing values. This led to infinite
looping after I added the extra folds.
By using the simpler m_Not matcher and not creating new 'not' ops for a and b,
we avoid that problem. It's possible that not using IsFreeToInvert() here is
more limiting than the simpler matcher, but there are no tests for anything
more exotic. It's also possible that we should relax the use checking further
to handle a case like PR35834:
https://bugs.llvm.org/show_bug.cgi?id=35834
...but we can make that a follow-up if it is needed.
llvm-svn: 321882
|
|
|
|
| |
llvm-svn: 321801
|
|
|
|
|
|
|
|
| |
getZExtValue
Reduced from oss-fuzz #4871 test case
llvm-svn: 321748
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This patch enables folding under -ffast-math flag sqrt(a) * sqrt(b) -> sqrt(a*b)
Reviewers: hfinkel, spatel, davide
Reviewed By: spatel, davide
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D41322
llvm-svn: 321637
|
|
|
|
|
|
|
|
| |
Protects against casts from constexpr etc.
Reduced from oss-fuzz #4788 test case
llvm-svn: 321515
|
|
|
|
|
|
|
|
| |
InstSimplify is responsible for handling these, but we shouldn't just assert here.
Reduced from oss-fuzz #4808 test case
llvm-svn: 321489
|
|
|
|
| |
llvm-svn: 321468
|
|
|
|
| |
llvm-svn: 321467
|
|
|
|
|
|
| |
This simplifies code, but the real motivation is that it lets me clean up some downstream code.
llvm-svn: 321466
|
|
|
|
|
|
|
| |
We might want to select NAN here or do this transform with fast-math,
but this should at least fix the miscompile.
llvm-svn: 321461
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: rnk, aprantl, majnemer
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D414
llvm-svn: 321191
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We want to do this for 2 reasons:
1. Value tracking does not recognize the ashr variant, so it would fail to match for cases like D39766.
2. DAGCombiner does better at producing optimal codegen when we have the cmp+sel pattern.
More detail about what happens in the backend:
1. DAGCombiner has a generic transform for all targets to convert the scalar cmp+sel variant of abs
into the shift variant. That is the opposite of this IR canonicalization.
2. DAGCombiner has a generic transform for all targets to convert the vector cmp+sel variant of abs
into either an ABS node or the shift variant. That is again the opposite of this IR canonicalization.
3. DAGCombiner has a generic transform for all targets to convert the exact shift variants produced by #1 or #2
into an ISD::ABS node. Note: It would be an efficiency improvement if we had #1 go directly to an ABS node
when that's legal/custom.
4. The pattern matching above is incomplete, so it is possible to escape the intended/optimal codegen in a
variety of ways.
a. For #2, the vector path is missing the case for setlt with a '1' constant.
b. For #3, we are missing a match for commuted versions of the shift variants.
5. Therefore, this IR canonicalization can only help get us to the optimal codegen. The version of cmp+sel
produced by this patch will be recognized in the DAG and converted to an ABS node when possible or the
shift sequence when not.
6. In the following examples with this patch applied, we may get conditional moves rather than the shift
produced by the generic DAGCombiner transforms. The conditional move is created using a target-specific
decision for any given target. Whether it is optimal or not for a particular subtarget may be up for debate.
define i32 @abs_shifty(i32 %x) {
%signbit = ashr i32 %x, 31
%add = add i32 %signbit, %x
%abs = xor i32 %signbit, %add
ret i32 %abs
}
define i32 @abs_cmpsubsel(i32 %x) {
%cmp = icmp slt i32 %x, zeroinitializer
%sub = sub i32 zeroinitializer, %x
%abs = select i1 %cmp, i32 %sub, i32 %x
ret i32 %abs
}
define <4 x i32> @abs_shifty_vec(<4 x i32> %x) {
%signbit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
%add = add <4 x i32> %signbit, %x
%abs = xor <4 x i32> %signbit, %add
ret <4 x i32> %abs
}
define <4 x i32> @abs_cmpsubsel_vec(<4 x i32> %x) {
%cmp = icmp slt <4 x i32> %x, zeroinitializer
%sub = sub <4 x i32> zeroinitializer, %x
%abs = select <4 x i1> %cmp, <4 x i32> %sub, <4 x i32> %x
ret <4 x i32> %abs
}
> $ ./opt -instcombine shiftyabs.ll -S | ./llc -o - -mtriple=x86_64 -mattr=avx
> abs_shifty:
> movl %edi, %eax
> negl %eax
> cmovll %edi, %eax
> retq
>
> abs_cmpsubsel:
> movl %edi, %eax
> negl %eax
> cmovll %edi, %eax
> retq
>
> abs_shifty_vec:
> vpabsd %xmm0, %xmm0
> retq
>
> abs_cmpsubsel_vec:
> vpabsd %xmm0, %xmm0
> retq
>
> $ ./opt -instcombine shiftyabs.ll -S | ./llc -o - -mtriple=aarch64
> abs_shifty:
> cmp w0, #0 // =0
> cneg w0, w0, mi
> ret
>
> abs_cmpsubsel:
> cmp w0, #0 // =0
> cneg w0, w0, mi
> ret
>
> abs_shifty_vec:
> abs v0.4s, v0.4s
> ret
>
> abs_cmpsubsel_vec:
> abs v0.4s, v0.4s
> ret
>
> $ ./opt -instcombine shiftyabs.ll -S | ./llc -o - -mtriple=powerpc64le
> abs_shifty:
> srawi 4, 3, 31
> add 3, 3, 4
> xor 3, 3, 4
> blr
>
> abs_cmpsubsel:
> srawi 4, 3, 31
> add 3, 3, 4
> xor 3, 3, 4
> blr
>
> abs_shifty_vec:
> vspltisw 3, -16
> vspltisw 4, 15
> vsubuwm 3, 4, 3
> vsraw 3, 2, 3
> vadduwm 2, 2, 3
> xxlxor 34, 34, 35
> blr
>
> abs_cmpsubsel_vec:
> vspltisw 3, -16
> vspltisw 4, 15
> vsubuwm 3, 4, 3
> vsraw 3, 2, 3
> vadduwm 2, 2, 3
> xxlxor 34, 34, 35
> blr
>
Differential Revision: https://reviews.llvm.org/D40984
llvm-svn: 320921
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
version of InstCombine
Summary:
Passing AliasAnalysis results instead of nullptr appears to work just fine.
A couple new-pass-manager tests updated to align with new order of analyses.
Reviewers: chandlerc, spatel, craig.topper
Reviewed By: chandlerc
Subscribers: mehdi_amini, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D41203
llvm-svn: 320687
|
|
|
|
| |
llvm-svn: 320628
|
|
|
|
|
|
| |
OpenGL issues should be fixed by now.
llvm-svn: 320568
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320525
|
|
|
|
|
|
|
|
| |
bitcast."
This reverts commit r320510 - again sanitizers bbots.
llvm-svn: 320513
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320510
|
|
|
|
|
|
|
|
|
| |
bitcast."
This reverts commit r320499 again to resolve the problem with the
sanitizers bbots.
llvm-svn: 320501
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320499
|
|
|
|
|
|
|
|
|
| |
bitcast."
This reverts commit r320496 to solve the problems with sanitizer
buildbots.
llvm-svn: 320498
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320496
|
|
|
|
|
|
|
|
| |
bitcast."
This reverts commit r320488 because of the failed asan buildbots..
llvm-svn: 320490
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320488
|
|
|
|
|
|
|
|
| |
bitcast."
This reverts commit r320483 because of the failed Windows buildbots.
llvm-svn: 320485
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320483
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Currently, in InstCombineLoadStoreAlloca, we have simplification
rules for the following cases:
1. load off a null
2. load off a GEP with null base
3. store to a null
This patch adds support for the fourth case which is store into a
GEP with null base. Since this is UB as well (and directly analogous to
the load off a GEP with null base), we can substitute the stored val
with undef in instcombine, so that SimplifyCFG can optimize this code
into unreachable code.
Note: Right now, simplifyCFG hasn't been taught about optimizing
this to unreachable and adding an llvm.trap (this is already done for
the above 3 cases).
Reviewers: majnemer, hfinkel, sanjoy, davide
Reviewed by: sanjoy, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41026
llvm-svn: 320480
|
|
|
|
|
|
|
| |
They were causing failures of the piglit OpenGL tests with AMD GPUs using the
Mesa radeonsi driver.
llvm-svn: 320466
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
minmax load bitcast."
The tests fail (opt asserts) on Windows.
> Summary:
> If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
> &V2)))), bitcast)`, but the load is used in other instructions, it leads
> to looping in InstCombiner. Patch adds additional check that all users
> of the load instructions are stores and then replaces all uses of load
> instruction by the new one with new type.
>
> Reviewers: RKSimon, spatel, majnemer
>
> Subscribers: llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320421
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If we have pattern `store (load(bitcast(select (cmp(V1, V2), &V1,
&V2)))), bitcast)`, but the load is used in other instructions, it leads
to looping in InstCombiner. Patch adds additional check that all users
of the load instructions are stores and then replaces all uses of load
instruction by the new one with new type.
Reviewers: RKSimon, spatel, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41072
llvm-svn: 320407
|
|
|
|
|
|
| |
Don't assume that the pattern matched SRL can be cast to an Instruction (might be ConstExpr etc.)
llvm-svn: 320270
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is LLVM instrumentation for the new HWASan tool. It is basically
a stripped down copy of ASan at this point, w/o stack or global
support. Instrumenation adds a global constructor + runtime callbacks
for every load and store.
HWASan comes with its own IR attribute.
A brief design document can be found in
clang/docs/HardwareAssistedAddressSanitizerDesign.rst (submitted earlier).
Reviewers: kcc, pcc, alekseyshl
Subscribers: srhines, mehdi_amini, mgorny, javed.absar, eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D40932
llvm-svn: 320217
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
&V1, &V2)) --> store (, load (select(Cond, load &V1, load &V2)))
Summary:
If we have the code like this:
```
float a, b;
a = std::max(a ,b);
```
it is converted into something like this:
```
%call = call dereferenceable(4) float* @_ZSt3maxIfERKT_S2_S2_(float* nonnull dereferenceable(4) %a.addr, float* nonnull dereferenceable(4) %b.addr)
%1 = bitcast float* %call to i32*
%2 = load i32, i32* %1, align 4
%3 = bitcast float* %a.addr to i32*
store i32 %2, i32* %3, align 4
```
After inlinning this code is converted to the next:
```
%1 = load float, float* %a.addr
%2 = load float, float* %b.addr
%cmp.i = fcmp fast olt float %1, %2
%__b.__a.i = select i1 %cmp.i, float* %a.addr, float* %b.addr
%3 = bitcast float* %__b.__a.i to i32*
%4 = load i32, i32* %3, align 4
%5 = bitcast float* %arrayidx to i32*
store i32 %4, i32* %5, align 4
```
This pattern is not recognized as minmax pattern.
Patch solves this problem by converting sequence
```
store (bitcast, (load bitcast (select ((cmp V1, V2), &V1, &V2))))
```
to a sequence
```
store (,load (select((cmp V1, V2), &V1, &V2)))
```
After this the code is recognized as minmax pattern.
Reviewers: RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40304
llvm-svn: 320157
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D40390
llvm-svn: 320049
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This restores the half of:
https://reviews.llvm.org/rL75531
that was reverted at:
https://reviews.llvm.org/rL159230
For the x86 case mentioned there, we now produce:
leal 1(%rdi), %eax
subl %esi, %eax
We have target hooks to invert this in DAGCombiner (and x86 is enabled) with:
https://reviews.llvm.org/rL296977
https://reviews.llvm.org/rL311731
AArch64 and possibly other targets would probably benefit from enabling those hooks too.
See PR30327:
https://bugs.llvm.org/show_bug.cgi?id=30327#c2
Differential Revision: https://reviews.llvm.org/D40612
llvm-svn: 319964
|
|
|
|
| |
llvm-svn: 319067
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
// trunc (binop X, C) --> binop (trunc X, C')
// trunc (binop (ext X), Y) --> binop X, (trunc Y)
I'm grouping sub with the other binops because that makes the code simpler
and the transforms are valid:
https://rise4fun.com/Alive/UeF
...so even though we don't expect a sub with constant Op1 or any of the
other opcodes with constant Op0 due to canonicalization rules, we might as
well handle those situations if non-canonical code somehow reaches this
point (it should just make instcombine more efficient in reaching its
end goal).
This should solve the problem that later manifests in the vectorizers in
PR35295:
https://bugs.llvm.org/show_bug.cgi?id=35295
llvm-svn: 318404
|
|
|
|
|
|
|
|
|
| |
Note that one-use and shouldChangeType() are checked ahead of the switch.
Without the narrowing folds, we can produce inferior vector code as shown in PR35299:
https://bugs.llvm.org/show_bug.cgi?id=35299
llvm-svn: 318323
|
|
|
|
|
|
|
|
|
|
|
| |
InstCombine salvages debug info for every instruction it erases from its
worklist, but it wasn't doing it during its initial DCE when populating
its worklist. This fixes that.
This should help improve availability of 'this' in optimized debug info
when casts are necessary.
llvm-svn: 318320
|