| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
| |
This is step 3 of refactoring to solve PR26760:
https://llvm.org/bugs/show_bug.cgi?id=26760
llvm-svn: 265954
|
|
|
|
|
|
|
| |
This is step 2 of refactoring to solve PR26760:
https://llvm.org/bugs/show_bug.cgi?id=26760
llvm-svn: 265951
|
|
|
|
|
|
|
|
|
|
|
| |
We had a select of a cast of a select but attempted to replace the outer
select with the inner select dispite their incompatible types.
Patch by Anton Korobeynikov!
This fixes PR27236.
llvm-svn: 265805
|
|
|
|
|
|
|
|
|
|
| |
Two or more identical assumes are occasionally next to each other in a
basic block.
While our generic machinery will turn a redundant assume into a no-op,
it is not super cheap.
We can perform a simpler check to achieve the same result for this case.
llvm-svn: 265801
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Fixes PR26774.
If you're aware of the issue, feel free to skip the "Motivation"
section and jump directly to "This patch".
Motivation:
I define "refinement" as discarding behaviors from a program that the
optimizer has license to discard. So transforming:
```
void f(unsigned x) {
unsigned t = 5 / x;
(void)t;
}
```
to
```
void f(unsigned x) { }
```
is refinement, since the behavior went from "if x == 0 then undefined
else nothing" to "nothing" (the optimizer has license to discard
undefined behavior).
Refinement is a fundamental aspect of many mid-level optimizations done
by LLVM. For instance, transforming `x == (x + 1)` to `false` also
involves refinement since the expression's value went from "if x is
`undef` then { `true` or `false` } else { `false` }" to "`false`" (by
definition, the optimizer has license to fold `undef` to any non-`undef`
value).
Unfortunately, refinement implies that the optimizer cannot assume
that the implementation of a function it can see has all of the
behavior an unoptimized or a differently optimized version of the same
function can have. This is a problem for functions with comdat
linkage, where a function can be replaced by an unoptimized or a
differently optimized version of the same source level function.
For instance, FunctionAttrs cannot assume a comdat function is
actually `readnone` even if it does not have any loads or stores in
it; since there may have been loads and stores in the "original
function" that were refined out in the currently visible variant, and
at the link step the linker may in fact choose an implementation with
a load or a store. As an example, consider a function that does two
atomic loads from the same memory location, and writes to memory only
if the two values are not equal. The optimizer is allowed to refine
this function by first CSE'ing the two loads, and the folding the
comparision to always report that the two values are equal. Such a
refined variant will look like it is `readonly`. However, the
unoptimized version of the function can still write to memory (since
the two loads //can// result in different values), and selecting the
unoptimized version at link time will retroactively invalidate
transforms we may have done under the assumption that the function
does not write to memory.
Note: this is not just a problem with atomics or with linking
differently optimized object files. See PR26774 for more realistic
examples that involved neither.
This patch:
This change introduces a new set of linkage types, predicated as
`GlobalValue::mayBeDerefined` that returns true if the linkage type
allows a function to be replaced by a differently optimized variant at
link time. It then changes a set of IPO passes to bail out if they see
such a function.
Reviewers: chandlerc, hfinkel, dexonsmith, joker.eph, rnk
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18634
llvm-svn: 265762
|
|
|
|
|
|
| |
A catchswitch is a terminator, instructions cannot be inserted after it.
llvm-svn: 265158
|
|
|
|
| |
llvm-svn: 264944
|
|
|
|
| |
llvm-svn: 264943
|
|
|
|
| |
llvm-svn: 264124
|
|
|
|
|
|
|
|
|
| |
CatchSwitches are not splittable, we cannot insert casts, etc. before
them.
This fixes PR26992.
llvm-svn: 263874
|
|
|
|
|
|
|
|
|
|
| |
This patch enhances InstCombine to handle following case:
A -> B bitcast
PHI
B -> A bitcast
llvm-svn: 263734
|
|
|
|
| |
llvm-svn: 263585
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously we had a notion of convergent functions but not of convergent
calls. This is insufficient to correctly analyze calls where the target
is unknown, e.g. indirect calls.
Now a call is convergent if it targets a known-convergent function, or
if it's explicitly marked as convergent. As usual, we can remove
convergent where we can prove that no convergent operations are
performed in the call.
Originally landed as r261544, then reverted in r261544 for (incidental)
build breakage. Re-landed here with no changes.
Reviewers: chandlerc, jingyue
Subscribers: llvm-commits, tra, jhen, hfinkel
Differential Revision: http://reviews.llvm.org/D17739
llvm-svn: 263481
|
|
|
|
|
|
|
|
| |
This reapplies r263258, which was reverted in r263321 because
of issues on Clang side.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263393
|
|
|
|
|
|
|
|
|
| |
This follows up on the related AVX instruction transforms, but this
one is too strange to do anything more with. Intel's behavioral
description of this instruction in its Software Developer's Manual
is tragi-comic.
llvm-svn: 263340
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit ae14bf6488e8441f0f6d74f00455555f6f3943ac
Author: Mehdi Amini <mehdi.amini@apple.com>
Date: Fri Mar 11 17:15:50 2016 +0000
Remove PreserveNames template parameter from IRBuilder
Summary:
Following r263086, we are now relying on a flag on the Context to
discard Value names in release builds.
Reviewers: chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18023
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263258
91177308-0d34-0410-b5e6-96231b3b80d8
until we can figure out what to do about clang and Release build testing.
This reverts commit 263258.
llvm-svn: 263321
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Following r263086, we are now relying on a flag on the Context to
discard Value names in release builds.
Reviewers: chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18023
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263258
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.
In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.
llvm-svn: 263219
|
|
|
|
|
|
|
|
|
| |
Since the names are used in a loop this does more work in debug builds. In
release builds value names are generally discarded so we don't have to do
the concatenation at all. It's also simpler code, no functional change
intended.
llvm-svn: 263215
|
|
|
|
|
|
| |
Extract out a generic interface from a recently landed patch and document a TODO in case compile time becomes a problem.
llvm-svn: 263062
|
|
|
|
|
|
|
|
| |
When checking whether an smin is positive, we can move the comparison to one of the inputs if the other is known positive. If the known positive one is the min, then the other can't be negative. If the other is the min, then we compute the min.
Differential Revision: http://reviews.llvm.org/D17873
llvm-svn: 263059
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As part of r251146 InstCombine was extended to call computeKnownBits on
every value in the function to determine whether it happens to be
constant. This increases typical compiletime by 1-3% (5% in irgen+opt
time) in my measurements. On the other hand this case did not trigger
once in the whole llvm-testsuite.
This patch introduces the notion of ExpensiveCombines which are only
enabled for OptLevel > 2. I removed the check in InstructionSimplify as
that is called from various places where the OptLevel is not known but
given the rarity of the situation I think a check in InstCombine is
enough.
Differential Revision: http://reviews.llvm.org/D16835
llvm-svn: 263047
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Original commit message:
calculate builtin_object_size if argument is a removable pointer
This patch fixes calculating correct value for builtin_object_size function
when pointer is used only in builtin_object_size function call and never
after that.
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D17337
Reland the original change with a small modification (first do a null check
and then do the cast) to satisfy ubsan.
llvm-svn: 263011
|
|
|
|
|
|
| |
This reverts commit r262670 due to compile failure.
llvm-svn: 262916
|
|
|
|
|
|
|
|
|
|
| |
This patch enhances InstCombine to handle following case:
A -> B bitcast
PHI
B -> A bitcast
llvm-svn: 262670
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Given that we're not actually reducing the instruction count in the included
regression tests, I think we would call this a canonicalization step.
The motivation comes from the example in PR26702:
https://llvm.org/bugs/show_bug.cgi?id=26702
If we hoist the bitwise logic ahead of the bitcast, the previously unoptimizable
example of:
define <4 x i32> @is_negative(<4 x i32> %x) {
%lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
%not = xor <4 x i32> %lobit, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc = bitcast <4 x i32> %not to <2 x i64>
%notnot = xor <2 x i64> %bc, <i64 -1, i64 -1>
%bc2 = bitcast <2 x i64> %notnot to <4 x i32>
ret <4 x i32> %bc2
}
Simplifies to the expected:
define <4 x i32> @is_negative(<4 x i32> %x) {
%lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
ret <4 x i32> %lobit
}
Differential Revision: http://reviews.llvm.org/D17583
llvm-svn: 262645
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This is the last step toward supporting aggregate memory access in instcombine. This explodes stores of arrays into a serie of stores for each element, allowing them to be optimized.
Reviewers: joker.eph, reames, hfinkel, majnemer, mgrang
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17828
llvm-svn: 262530
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This is another step toward improving fca support. This unpack load of array in a series of load to array's elements.
Reviewers: chandlerc, joker.eph, majnemer, reames, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15890
llvm-svn: 262521
|
|
|
|
|
|
|
|
| |
asm output
that is broken by this change
llvm-svn: 262440
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
shifts (PR26701)
As noted in the code comment, I don't think we can do the same transform that we do for
*scalar* integers comparisons to *vector* integers comparisons because it might pessimize
the general case.
Exhibit A for an incomplete integer comparison ISA remains x86 SSE/AVX: it only has EQ and GT
for integer vectors.
But we should now recognize all the variants of this construct and produce the optimal code
for the cases shown in:
https://llvm.org/bugs/show_bug.cgi?id=26701
llvm-svn: 262424
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: SampleProfile pass needs to be performed after InstructionCombiningPass, which helps eliminate un-inlinable function calls.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17742
llvm-svn: 262419
|
|
|
|
|
|
|
| |
Most portions of InstCombine properly propagate fast math flags, but
apparently the vector scalarization section was overlooked.
llvm-svn: 262376
|
|
|
|
|
|
|
| |
Revert r262337 as "check-llvm ubsan" step failed on
sanitizer-x86_64-linux-fast buildbot.
llvm-svn: 262349
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes calculating correct value for builtin_object_size function
when pointer is used only in builtin_object_size function call and never
after that.
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D17337
llvm-svn: 262337
|
|
|
|
|
|
|
| |
Continuation of:
http://reviews.llvm.org/rL262269
llvm-svn: 262273
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The intended effect of this patch in conjunction with:
http://reviews.llvm.org/rL259392
http://reviews.llvm.org/rL260145
is that customers using the AVX intrinsics in C will benefit from combines when
the load mask is constant:
__m128 mload_zeros(float *f) {
return _mm_maskload_ps(f, _mm_set1_epi32(0));
}
__m128 mload_fakeones(float *f) {
return _mm_maskload_ps(f, _mm_set1_epi32(1));
}
__m128 mload_ones(float *f) {
return _mm_maskload_ps(f, _mm_set1_epi32(0x80000000));
}
__m128 mload_oneset(float *f) {
return _mm_maskload_ps(f, _mm_set_epi32(0x80000000, 0, 0, 0));
}
...so none of the above will actually generate a masked load for optimized code.
This is the masked load counterpart to:
http://reviews.llvm.org/rL262064
llvm-svn: 262269
|
|
|
|
|
|
|
| |
We ended up removing a save/restore pair around an inalloca call,
leading to a miscompile in Chromium.
llvm-svn: 262095
|
|
|
|
|
|
|
|
|
| |
Replicate everything for integers...because x86.
Continuation of:
http://reviews.llvm.org/rL262064
llvm-svn: 262077
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The intended effect of this patch in conjunction with:
http://reviews.llvm.org/rL259392
http://reviews.llvm.org/rL260145
is that customers using the AVX intrinsics in C will benefit from combines when
the store mask is constant:
void mstore_zero_mask(float *f, __m128 v) {
_mm_maskstore_ps(f, _mm_set1_epi32(0), v);
}
void mstore_fake_ones_mask(float *f, __m128 v) {
_mm_maskstore_ps(f, _mm_set1_epi32(1), v);
}
void mstore_ones_mask(float *f, __m128 v) {
_mm_maskstore_ps(f, _mm_set1_epi32(0x80000000), v);
}
void mstore_one_set_elt_mask(float *f, __m128 v) {
_mm_maskstore_ps(f, _mm_set_epi32(0x80000000, 0, 0, 0), v);
}
...so none of the above will actually generate a masked store for optimized code.
Differential Revision: http://reviews.llvm.org/D17485
llvm-svn: 262064
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is part of the payoff for the refactoring in:
http://reviews.llvm.org/rL261649
http://reviews.llvm.org/rL261707
In addition to removing a pile of duplicated code, the xor case was
missing the optimization for vector types because it checked
"SrcTy->isIntegerTy()" rather than "SrcTy->isIntOrIntVectorTy()"
like 'and' and 'or' were already doing.
This solves part of:
https://llvm.org/bugs/show_bug.cgi?id=26702
llvm-svn: 261750
|
|
|
|
|
|
|
|
|
|
| |
This is a part of the refactoring to unify isSafeToLoadUnconditionally and isDereferenceablePointer functions. In subsequent change I'm going to eliminate isDerferenceableAndAlignedPointer from Loads API, leaving isSafeToLoadSpecualtively the only function to check is load instruction can be speculated.
Reviewed By: hfinkel
Differential Revision: http://reviews.llvm.org/D16180
llvm-svn: 261736
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Note: The 'and' case in foldCastedBitwiseLogic() is inheriting one extra
check from the nearly identical 'or' case:
if ((!isa<ICmpInst>(Cast0Src) || !isa<ICmpInst>(Cast1Src))
But I'm not sure how to expose that difference in a regression test.
Without that check, the 'or' path will infinite loop on:
test/Transforms/InstCombine/zext-or-icmp.ll
because the zext-or-icmp fold is attempting a reverse transform.
The refactoring should extend to the 'xor' case next to solve part of
PR26702.
llvm-svn: 261707
|
|
|
|
|
|
| |
Less indenting, named local variables, more descriptive names.
llvm-svn: 261659
|
|
|
|
| |
llvm-svn: 261652
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a straight cut and paste of the existing code and is intended to
be the first step in solving part of PR26702:
https://llvm.org/bugs/show_bug.cgi?id=26702
We should be able to reuse most of this and delete the nearly identical
existing code in visitOr(). Then, we can enhance visitXor() to use the
same code too.
llvm-svn: 261649
|
|
|
|
|
|
|
| |
This reverts r261544, which was causing a test failure in
Transforms/FunctionAttrs/readattrs.ll.
llvm-svn: 261549
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously we had a notion of convergent functions but not of convergent
calls. This is insufficient to correctly analyze calls where the target
is unknown, e.g. indirect calls.
Now a call is convergent if it targets a known-convergent function, or
if it's explicitly marked as convergent. As usual, we can remove
convergent where we can prove that no convergent operations are
performed in the call.
Reviewers: chandlerc, jingyue
Subscribers: hfinkel, jhen, tra, llvm-commits
Differential Revision: http://reviews.llvm.org/D17317
llvm-svn: 261544
|
|
|
|
| |
llvm-svn: 261484
|
|
|
|
|
|
|
|
|
| |
Originally part of:
http://reviews.llvm.org/D17485
We need this when simplifying masked memory ops too.
llvm-svn: 261483
|
|
|
|
|
|
| |
the lowest vector element
llvm-svn: 261460
|