| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
| |
This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0.
The m_OneUse check is avoided because even in the case of the
multiple uses for 1.0/Y, the number of instructions remain the same
and a division is replaced by a multiplication.
Differential Revision: https://reviews.llvm.org/D72319
|
|
|
|
|
|
|
|
|
| |
As described here:
https://bugs.llvm.org/show_bug.cgi?id=44186
The match() code safely allows undef values, but we can't safely
propagate a vector constant that contains an undef to the new
compare instruction.
|
|
|
|
|
|
|
| |
Extends rL373230 and solves the motivating bug (although in a narrow way):
https://bugs.llvm.org/show_bug.cgi?id=43497
llvm-svn: 373851
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Name: negate if true
%sel = select i1 %cond, i32 -1, i32 1
%r = mul i32 %sel, %x
=>
%m = sub i32 0, %x
%r = select i1 %cond, i32 %m, i32 %x
Name: negate if false
%sel = select i1 %cond, i32 1, i32 -1
%r = mul i32 %sel, %x
=>
%m = sub i32 0, %x
%r = select i1 %cond, i32 %x, i32 %m
https://rise4fun.com/Alive/Nlh
llvm-svn: 373230
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
x / fabs(x) -> copysign(1.0, x)
fabs(x) / x -> copysign(1.0, x)
Reviewers: spatel, foad, RKSimon, efriedma
Reviewed By: spatel
Subscribers: lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65898
llvm-svn: 368570
|
|
|
|
|
|
| |
Rename `hasUnaryFloatFn()` to `hasFloatFn()` and `getUnaryFloatFn()` to `getFloatFnName()`.
llvm-svn: 368449
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reverse the canonicalization of fneg relative to fmul/fdiv. That makes it
easier to implement the transforms (and possibly other fneg transforms) in
1 place because we can always start the pattern match from fneg (either the
legacy binop or the new unop).
There's a secondary practical benefit seen in PR21914 and PR42681:
https://bugs.llvm.org/show_bug.cgi?id=21914
https://bugs.llvm.org/show_bug.cgi?id=42681
...hoisting fneg rather than sinking seems to play nicer with LICM in IR
(although this change may expose analysis holes in the other direction).
1. The instcombine test changes show the expected neutral IR diffs from
reversing the order.
2. The reassociation tests show that we were missing an optimization
opportunity to fold away fneg-of-fneg. My reading of IEEE-754 says
that all of these transforms are allowed (regardless of binop/unop
fneg version) because:
"For all other operations [besides copy/abs/negate/copysign], this
standard does not specify the sign bit of a NaN result."
In all of these transforms, we always have some other binop
(fadd/fsub/fmul/fdiv), so we are free to flip the sign bit of a
potential intermediate NaN operand.
(If that interpretation is wrong, then we must already have a bug in
the existing transforms?)
3. The clang tests shouldn't exist as-is, but that's effectively a
revert of rL367149 (the test broke with an extension of the
pre-existing fneg canonicalization in rL367146).
Differential Revision: https://reviews.llvm.org/D65399
llvm-svn: 367447
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
power-of-two
Summary:
I have stumbled into this by accident while preparing to extend backend `x s% C ==/!= 0` handling.
While we did happen to handle this fold in most of the cases,
the folding is indirect - we fold `x u% y` to `x & (y-1)` (iff `y` is power-of-two),
or first turn `x s% -y` to `x u% y`; that does handle most of the cases.
But we can't turn `x s% INT_MIN` to `x u% -INT_MIN`,
and thus we end up being stuck with `(x s% INT_MIN) == 0`.
There is no such restriction for the more general fold:
https://rise4fun.com/Alive/IIeS
To be noted, the fold does not enforce that `y` is a constant,
so it may indeed increase instruction count.
This is consistent with what `x u% y`->`x & (y-1)` already does.
I think it makes sense, it's at most one (simple) extra instruction,
while `rem`ainder is really much more un-simple (and likely **very** costly).
Reviewers: spatel, RKSimon, nikic, xbolva00, craig.topper
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65046
llvm-svn: 367322
|
|
|
|
|
|
|
| |
This is a transform that we use with fmul, so use
it for fdiv too for consistency.
llvm-svn: 367146
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch applies clang-tidy's bugprone-argument-comment tool
to LLVM, clang and lld source trees. Here is how I created this
patch:
$ git clone https://github.com/llvm/llvm-project.git
$ cd llvm-project
$ mkdir build
$ cd build
$ cmake -GNinja -DCMAKE_BUILD_TYPE=Debug \
-DLLVM_ENABLE_PROJECTS='clang;lld;clang-tools-extra' \
-DCMAKE_EXPORT_COMPILE_COMMANDS=On -DLLVM_ENABLE_LLD=On \
-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ../llvm
$ ninja
$ parallel clang-tidy -checks='-*,bugprone-argument-comment' \
-config='{CheckOptions: [{key: StrictMode, value: 1}]}' -fix \
::: ../llvm/lib/**/*.{cpp,h} ../clang/lib/**/*.{cpp,h} ../lld/**/*.{cpp,h}
llvm-svn: 366177
|
|
|
|
|
|
|
| |
-(X * ConstExpr) becomes X * (-ConstExpr), so don't reverse that
and infinite loop.
llvm-svn: 365774
|
|
|
|
|
|
|
|
| |
(X / Y) * Z --> (X * Z) / Y
This can allow other optimizations/reassociations as shown in the test diffs.
llvm-svn: 358404
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D60647
llvm-svn: 358328
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D60395
llvm-svn: 358050
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit 1383a9168948aabfd827220c9445ce0ce5765800.
sdiv-canonicalize.ll fails after this revision. The fold needs to be
moved outside the branch handling constant operands. However when this
is done there are further test changes, so I'm reverting this in the
meantime.
llvm-svn: 358026
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D60395
llvm-svn: 358017
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to:
rL358005
Forego folding arbitrary vector constants to fix a possible miscompile bug.
We can enhance the transform if we do want to handle the more complicated
vector case.
llvm-svn: 358013
|
|
|
|
|
|
|
|
|
|
|
|
| |
A more general canonicalization between fdiv and fmul would not
handle this case because that would have to be limited by uses
to prevent 2 values from becoming 3 values:
(x/y) * (x/y) --> (x*x) / (y*y)
(But we probably should still have that limited -- but more general --
canonicalization independently of this change.)
llvm-svn: 357943
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: chandlerc
Reviewed By: chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D57494
llvm-svn: 352771
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
functions
Summary: This patch enables folding following expressions under -ffast-math flag: exp(X) * exp(Y) -> exp(X + Y), exp2(X) * exp2(Y) -> exp2(X + Y). Motivation: https://bugs.llvm.org/show_bug.cgi?id=35594
Reviewers: hfinkel, spatel, efriedma, lebedev.ri
Reviewed By: spatel, lebedev.ri
Subscribers: lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D41342
llvm-svn: 352730
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
|
|
|
|
|
|
|
|
| |
-X * Y --> -(X * Y)
X * -Y --> -(X * Y)
Differential Revision: https://reviews.llvm.org/D55961
llvm-svn: 350185
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In several places in the code we use the following pattern:
if (hasUnaryFloatFn(&TLI, Ty, LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
[...]
Value *Res = emitUnaryFloatFnCall(X, TLI.getName(LibFunc_tan), B, Attrs);
[...]
}
In short, we check if there is a lib-function for a certain type, and then
we _always_ fetch the name of the "double" version of the lib function and
construct a call to the appropriate function, that we just checked exists,
using that "double" name as a basis.
This is of course a problem in cases where the target doesn't support the
"double" version, but e.g. only the "float" version.
In that case TLI.getName(LibFunc_tan) returns "", and
emitUnaryFloatFnCall happily appends an "f" to "", and we erroneously end
up with a call to a function called "f".
To solve this, the above pattern is changed to
if (hasUnaryFloatFn(&TLI, Ty, LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
[...]
Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
LibFunc_tanl, B, Attrs);
[...]
}
I.e instead of first fetching the name of the "double" version and then
letting emitUnaryFloatFnCall() add the final "f" or "l", we let
emitUnaryFloatFnCall() fetch the right name from TLI.
Reviewers: eli.friedman, efriedma
Reviewed By: efriedma
Subscribers: efriedma, bjope, llvm-commits
Differential Revision: https://reviews.llvm.org/D53370
llvm-svn: 344725
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The IRBuilder CreateIntrinsic method wouldn't allow you to specify the
types that you wanted the intrinsic to be mangled with. To fix this
I've:
- Added an ArrayRef<Type *> member to both CreateIntrinsic overloads.
- Used that array to pass into the Intrinsic::getDeclaration call.
- Added a CreateUnaryIntrinsic to replace the most common use of
CreateIntrinsic where the type was auto-deduced from operand 0.
- Added a bunch more unit tests to test Create*Intrinsic calls that
weren't being tested (including the FMF flag that wasn't checked).
This was suggested as part of the AMDGPU specific atomic optimizer
review (https://reviews.llvm.org/D51969).
Differential Revision: https://reviews.llvm.org/D52087
llvm-svn: 343962
|
|
|
|
|
|
|
| |
This function will deal with more than shuffles with D50992, and I
have another potential per-element fold that could live here.
llvm-svn: 343692
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to rL342278:
The test diffs are all cosmetic due to the change in
value naming, but I'm including that to show that the
new code does perform these folds rather than something
else in instcombine.
D52075 should be able to use this code too rather than
duplicating all of the logic.
llvm-svn: 342292
|
|
|
|
|
|
|
|
|
|
| |
be using the element size for vectors
For vectors, getPrimitiveSizeInBits returns the full vector width. This code should using the element size for vectors. This could be fixed by calling getScalarSizeInBits, but its even easier to just get it from the APInt we're checking.
Differential Revision: https://reviews.llvm.org/D51938
llvm-svn: 341971
|
|
|
|
|
|
|
|
|
|
| |
(zext x), cst) --> (zext (mul x, cst')) for vectors constants.
Similar to D51236, but for mul instead of add.
Differential Revision: https://reviews.llvm.org/D51900
llvm-svn: 341961
|
|
|
|
|
|
|
|
|
| |
Unfortunately, sdiv isn't as simple because of UB due to overflow.
This fold is mentioned in PR38239:
https://bugs.llvm.org/show_bug.cgi?id=38239
llvm-svn: 338059
|
|
|
|
|
|
|
|
|
|
| |
The actual code seems to be correct, but the comments were misleading.
Patch by Aaron Puchert!
Differential Revision: https://reviews.llvm.org/D49276
llvm-svn: 337131
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This bug was created by rL335258 because we used to always call instsimplify
after trying the associative folds. After that change it became possible
for subsequent folds to encounter unsimplified code (and potentially assert
because of it).
Instead of carrying changed state through instcombine, we can just return
immediately. This allows instsimplify to run, so we can continue assuming
that easy folds have already occurred.
llvm-svn: 336965
|
|
|
|
| |
llvm-svn: 335623
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to other patches in this series:
https://reviews.llvm.org/rL335512
https://reviews.llvm.org/rL335527
https://reviews.llvm.org/rL335597
https://reviews.llvm.org/rL335616
...this is filling a gap in analysis that is exposed by an unrelated select-of-constants transform.
I didn't see a way to unify the sext cases because each div/rem opcode results in a different fold.
Note that in this case, the backend might want to convert the select into math:
Name: sext urem
%e = sext i1 %x to i32
%r = urem i32 %y, %e
=>
%c = icmp eq i32 %y, -1
%z = zext i1 %c to i32
%r = add i32 %z, %y
llvm-svn: 335622
|
|
|
|
|
|
|
|
|
|
| |
Note: I didn't add a hasOneUse() check because the existing,
related fold doesn't have that check. I suspect that the
improved analysis and codegen make these some of the rare
canonicalization cases where we allow an increase in
instructions.
llvm-svn: 335597
|
|
|
|
|
|
|
|
|
| |
This removes a "UDivFoldAction" in favor of a simple constant
matcher. In theory, the existing code could do more matching,
but I don't see any evidence or need for it. I've left a TODO
about using ValueTracking in case we see any regressions.
llvm-svn: 335545
|
|
|
|
| |
llvm-svn: 335527
|
|
|
|
|
|
|
|
|
|
| |
This is outwardly NFC from what I can tell, but it should be more efficient
to simplify first (despite the name, SimplifyAssociativeOrCommutative does
not actually simplify as InstSimplify does - it creates/morphs instructions).
This should make it easier to refactor duplicated code that runs for all binops.
llvm-svn: 335258
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we optimize select basing on fact that div by 0 is undef
we should not traverse the instruction which are not guaranteed to
transfer execution to next instruction. Guard intrinsic is an example.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47576
llvm-svn: 333864
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As noted in the review thread for rL333782, we could have
made a bug harder to hit if we were simplifying instructions
before trying other folds.
The shuffle transform in question isn't ever a simplification;
it's just a canonicalization. So I've renamed that to make that
clearer.
This is NFCI at this point, but I've regenerated the test file
to show the cosmetic value naming difference of using
instcombine's RAUW vs. the builder.
Possible follow-ups:
1. Move reassociation folds after simplifies too.
2. Refactor common code; we shouldn't have so much repetition.
llvm-svn: 333820
|
|
|
|
|
|
|
|
|
| |
ValueTracking; NFC
Differential Revision: https://reviews.llvm.org/D46704
Change-Id: Ifabcbe431a2169743b3cc310f2a34fd706f13f02
llvm-svn: 332026
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a follow-up to r331272.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
https://reviews.llvm.org/D46290
llvm-svn: 331275
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
|
|
|
|
|
|
|
|
| |
The tests marked with 'FIXME' require loosening the check
in SimplifyAssociativeOrCommutative() to optimize completely;
that's still checking isFast() in Instruction::isAssociative().
llvm-svn: 329121
|
|
|
|
| |
llvm-svn: 328560
|
|
|
|
|
|
|
|
|
|
| |
This replaces a large chunk of code that was looking for compound
patterns that include these sub-patterns. Existing tests ensure that
all of the previous examples are still folded as expected.
We still need to loosen the FMF check.
llvm-svn: 328502
|
|
|
|
|
|
| |
As the tests show, we could create extra instructions without any obvious benefit.
llvm-svn: 328498
|
|
|
|
|
|
| |
This is similar to D43765.
llvm-svn: 327797
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was supposed to be an NFC refactoring that will eventually allow
eliminating the isFast() predicate, but there's a rare possibility
that we would pessimize the code as shown in the test case because
we failed to check 'hasOneUse()' properly. This version also removes
an inefficiency of the old code; we would look for:
(X * C) * C1 --> X * (C * C1)
...but that pattern is always handled by
SimplifyAssociativeOrCommutative().
llvm-svn: 327404
|
|
|
|
|
|
|
| |
Put the simplest non-FMF folds first, so it's easier to
see what's left to fix/group/add with the FMF folds.
llvm-svn: 326632
|
|
|
|
|
|
|
|
|
|
| |
The code was checking that all of the instructions in the
sequence are 'fast', but that's not necessary. The final
multiply is all that we need to check (tests adjusted).
The fmul doesn't need to be fully 'fast' either, but that
can be another patch.
llvm-svn: 326608
|