| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As stated in IEEE-754 and discussed in:
https://bugs.llvm.org/show_bug.cgi?id=38086
...the sign of zero does not affect any FP compare predicate.
Known regressions were fixed with:
rL346097 (D54001)
rL346143
The transform will help reduce pattern-matching complexity to solve:
https://bugs.llvm.org/show_bug.cgi?id=39475
...as well as improve CSE and codegen (a zero constant is almost always
easier to produce than 0x80..00).
llvm-svn: 346147
|
|
|
|
|
|
|
| |
Also, remove/replace/minimize/enhance the tests for this fold.
The code drops FMF, so it needs more tests and at least 1 fix.
llvm-svn: 345734
|
|
|
|
|
|
|
|
| |
The 'OLT' case was updated at rL266175, so I assume it was just an
oversight that 'UGE' was not included because that patch handled
both predicates in InstSimplify.
llvm-svn: 345727
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This re-raises some of the open questions about how to apply and use fast-math-flags in IR from PR38086:
https://bugs.llvm.org/show_bug.cgi?id=38086
...but given the current implementation (no FMF on casts), this is likely the only way to predicate the
transform.
This is part of solving PR39475:
https://bugs.llvm.org/show_bug.cgi?id=39475
Differential Revision: https://reviews.llvm.org/D53874
llvm-svn: 345725
|
|
|
|
| |
llvm-svn: 345647
|
|
|
|
| |
llvm-svn: 345613
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Re-trying r344082 because it unintentionally included extra diffs.
Original commit message:
icmp ne (and X, 1), 0 --> trunc X to N x i1
Ideally, we'd do the same for scalars, but there will likely be
regressions unless we add more trunc folds as we're doing here
for vectors.
The motivating vector case is from PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549
define <4 x float> @bitwise_select(<4 x float> %x, <4 x float> %y, <4 x float> %z, <4 x float> %w) {
%c = fcmp ole <4 x float> %x, %y
%s = sext <4 x i1> %c to <4 x i32>
%s1 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
%s2 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
%cond = or <4 x i32> %s1, %s2
%condtr = trunc <4 x i32> %cond to <4 x i1>
%r = select <4 x i1> %condtr, <4 x float> %z, <4 x float> %w
ret <4 x float> %r
}
Here's a sampling of the vector codegen for that case using
mask+icmp (current behavior) vs. trunc (with this patch):
AVX before:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vandps LCPI0_0(%rip), %xmm0, %xmm0
vxorps %xmm1, %xmm1, %xmm1
vpcmpeqd %xmm1, %xmm0, %xmm0
vblendvps %xmm0, %xmm3, %xmm2, %xmm0
AVX after:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vblendvps %xmm0, %xmm2, %xmm3, %xmm0
AVX512f before:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vpbroadcastd LCPI0_0(%rip), %xmm1 ## xmm1 = [1,1,1,1]
vptestnmd %zmm1, %zmm0, %k1
vblendmps %zmm3, %zmm2, %zmm0 {%k1}
AVX512f after:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vpslld $31, %xmm0, %xmm0
vptestmd %zmm0, %zmm0, %k1
vblendmps %zmm2, %zmm3, %zmm0 {%k1}
AArch64 before:
fcmge v0.4s, v1.4s, v0.4s
zip1 v1.4s, v0.4s, v0.4s
zip2 v0.4s, v0.4s, v0.4s
orr v0.16b, v1.16b, v0.16b
movi v1.4s, #1
and v0.16b, v0.16b, v1.16b
cmeq v0.4s, v0.4s, #0
bsl v0.16b, v3.16b, v2.16b
AArch64 after:
fcmge v0.4s, v1.4s, v0.4s
zip1 v1.4s, v0.4s, v0.4s
zip2 v0.4s, v0.4s, v0.4s
orr v0.16b, v1.16b, v0.16b
bsl v0.16b, v2.16b, v3.16b
PowerPC-le before:
xvcmpgesp 34, 35, 34
vspltisw 0, 1
vmrglw 3, 2, 2
vmrghw 2, 2, 2
xxlor 0, 35, 34
xxlxor 35, 35, 35
xxland 34, 0, 32
vcmpequw 2, 2, 3
xxsel 34, 36, 37, 34
PowerPC-le after:
xvcmpgesp 34, 35, 34
vmrglw 3, 2, 2
vmrghw 2, 2, 2
xxlor 0, 35, 34
xxsel 34, 37, 36, 0
Differential Revision: https://reviews.llvm.org/D52747
llvm-svn: 344181
|
|
|
|
|
|
| |
This commit accidentally included the diffs from D53057.
llvm-svn: 344178
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
icmp ne (and X, 1), 0 --> trunc X to N x i1
Ideally, we'd do the same for scalars, but there will likely be
regressions unless we add more trunc folds as we're doing here
for vectors.
The motivating vector case is from PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549
define <4 x float> @bitwise_select(<4 x float> %x, <4 x float> %y, <4 x float> %z, <4 x float> %w) {
%c = fcmp ole <4 x float> %x, %y
%s = sext <4 x i1> %c to <4 x i32>
%s1 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
%s2 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
%cond = or <4 x i32> %s1, %s2
%condtr = trunc <4 x i32> %cond to <4 x i1>
%r = select <4 x i1> %condtr, <4 x float> %z, <4 x float> %w
ret <4 x float> %r
}
Here's a sampling of the vector codegen for that case using
mask+icmp (current behavior) vs. trunc (with this patch):
AVX before:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vandps LCPI0_0(%rip), %xmm0, %xmm0
vxorps %xmm1, %xmm1, %xmm1
vpcmpeqd %xmm1, %xmm0, %xmm0
vblendvps %xmm0, %xmm3, %xmm2, %xmm0
AVX after:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vblendvps %xmm0, %xmm2, %xmm3, %xmm0
AVX512f before:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vpbroadcastd LCPI0_0(%rip), %xmm1 ## xmm1 = [1,1,1,1]
vptestnmd %zmm1, %zmm0, %k1
vblendmps %zmm3, %zmm2, %zmm0 {%k1}
AVX512f after:
vcmpleps %xmm1, %xmm0, %xmm0
vpermilps $80, %xmm0, %xmm1 ## xmm1 = xmm0[0,0,1,1]
vpermilps $250, %xmm0, %xmm0 ## xmm0 = xmm0[2,2,3,3]
vorps %xmm0, %xmm1, %xmm0
vpslld $31, %xmm0, %xmm0
vptestmd %zmm0, %zmm0, %k1
vblendmps %zmm2, %zmm3, %zmm0 {%k1}
AArch64 before:
fcmge v0.4s, v1.4s, v0.4s
zip1 v1.4s, v0.4s, v0.4s
zip2 v0.4s, v0.4s, v0.4s
orr v0.16b, v1.16b, v0.16b
movi v1.4s, #1
and v0.16b, v0.16b, v1.16b
cmeq v0.4s, v0.4s, #0
bsl v0.16b, v3.16b, v2.16b
AArch64 after:
fcmge v0.4s, v1.4s, v0.4s
zip1 v1.4s, v0.4s, v0.4s
zip2 v0.4s, v0.4s, v0.4s
orr v0.16b, v1.16b, v0.16b
bsl v0.16b, v2.16b, v3.16b
PowerPC-le before:
xvcmpgesp 34, 35, 34
vspltisw 0, 1
vmrglw 3, 2, 2
vmrghw 2, 2, 2
xxlor 0, 35, 34
xxlxor 35, 35, 35
xxland 34, 0, 32
vcmpequw 2, 2, 3
xxsel 34, 36, 37, 34
PowerPC-le after:
xvcmpgesp 34, 35, 34
vmrglw 3, 2, 2
vmrghw 2, 2, 2
xxlor 0, 35, 34
xxsel 34, 37, 36, 0
Differential Revision: https://reviews.llvm.org/D52747
llvm-svn: 344082
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is a continuation of the fix for PR34627 "InstCombine assertion at vector gep/icmp folding". (I just realized bugpoint had fuzzed the original test for me, so I had fixed another trigger of the same assert in adjacent code in InstCombine.)
This patch avoids optimizing an icmp (to look only at the base pointers) when the resulting icmp would have a different type.
The patch adds a testcase and also cleans up and shrinks the pre-existing test for the adjacent assert trigger.
Reviewers: lebedev.ri, majnemer, spatel
Reviewed By: lebedev.ri
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52494
llvm-svn: 343486
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When C is not zero and infinites are not allowed (C / X) > 0 is a sign
test. Depending on the sign of C, the predicate must be swapped.
E.g.:
foo(double X) {
if ((-2.0 / X) <= 0) ...
}
=>
foo(double X) {
if (X >= 0) ...
}
Patch by: @marels (Martin Elshuber)
Differential Revision: https://reviews.llvm.org/D51942
llvm-svn: 343228
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is to fix PR38984 "InstCombine assertion at vector gep/icmp folding":
https://bugs.llvm.org/show_bug.cgi?id=38984
Reviewers: majnemer, spatel, lattner, lebedev.ri
Reviewed By: lebedev.ri
Subscribers: lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D52263
llvm-svn: 342647
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
>> y) mask
Summary:
The last low-bit-mask-pattern-producing-pattern i can think of.
https://rise4fun.com/Alive/UGzE <- non-canonical
But we can not canonicalize it because of extra uses.
https://bugs.llvm.org/show_bug.cgi?id=38123
Reviewers: spatel, craig.topper, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52148
llvm-svn: 342548
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
y)+(-1)) mask
Summary:
Same as to D52146.
`((1 << y)+(-1))` is simply non-canoniacal version of `~(-1 << y)`: https://rise4fun.com/Alive/0vl
We can not canonicalize it due to the extra uses. But we can handle it here.
Reviewers: spatel, craig.topper, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52147
llvm-svn: 342547
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Two folds are happening here:
1. https://rise4fun.com/Alive/oaFX
2. And then `foldICmpWithHighBitMask()` (D52001): https://rise4fun.com/Alive/wsP4
This change doesn't just add the handling for eq/ne predicates,
it actually builds upon the previous `foldICmpWithLowBitMaskedVal()` work,
so **all** the 16 fold variants* are immediately supported.
I'm indeed only testing these two predicates.
I do not feel like re-proving all 16 folds*, because they were already proven
for the general case of constant with all-ones in low bits. So as long as
the mask produces all-ones in low bits, i'm pretty sure the fold is valid.
But required, i can re-prove, let me know.
* eq/ne are commutative - 4 folds; ult/ule/ugt/uge - are not commutative (the commuted variant is InstSimplified), 4 folds; slt/sle/sgt/sge are not commutative - 4 folds. 12 folds in total.
https://bugs.llvm.org/show_bug.cgi?id=38123
https://bugs.llvm.org/show_bug.cgi?id=38708
Reviewers: spatel, craig.topper, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52146
llvm-svn: 342546
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
It is sometimes important to check that some newly-computed value
is non-negative and only n bits wide (where n is a variable.)
There are many ways to check that:
https://godbolt.org/z/o4RB8D
The last variant seems best?
(I'm sure there are some other variations i haven't thought of..)
The last (as far i know?) pattern, non-canonical due to the extra use.
https://godbolt.org/z/aCMsPk
https://rise4fun.com/Alive/I6f
https://bugs.llvm.org/show_bug.cgi?id=38708
Reviewers: spatel, craig.topper, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52062
llvm-svn: 342321
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
It is sometimes important to check that some newly-computed value
is non-negative and only n bits wide (where n is a variable.)
There are many ways to check that:
https://godbolt.org/z/o4RB8D
The last variant seems best?
(I'm sure there are some other variations i haven't thought of..)
More complicated, canonical pattern:
https://rise4fun.com/Alive/uhA
We do need to have two `switch()`'es like this,
to not mismatch the swappable predicates.
https://bugs.llvm.org/show_bug.cgi?id=38708
Reviewers: spatel, craig.topper, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52001
llvm-svn: 342173
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
It is sometimes important to check that some newly-computed value
is non-negative and only `n` bits wide (where `n` is a variable.)
There are **many** ways to check that:
https://godbolt.org/z/o4RB8D
The last variant seems best?
(I'm sure there are some other variations i haven't thought of..)
Let's handle the second variant first, since it is much simpler.
https://rise4fun.com/Alive/LYjY
https://bugs.llvm.org/show_bug.cgi?id=38708
Reviewers: spatel, craig.topper, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51985
llvm-svn: 342067
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Name: op_ugt_sum
%a = add i8 %x, %y
%r = icmp ugt i8 %x, %a
=>
%notx = xor i8 %x, -1
%r = icmp ugt i8 %y, %notx
Name: sum_ult_op
%a = add i8 %x, %y
%r = icmp ult i8 %a, %x
=>
%notx = xor i8 %x, -1
%r = icmp ugt i8 %y, %notx
https://rise4fun.com/Alive/ZRxI
AFAICT, this doesn't interfere with any add-saturation patterns
because those have >1 use for the 'add'. But this should be
better for IR analysis and codegen in the basic cases.
This is another fold inspired by PR14613:
https://bugs.llvm.org/show_bug.cgi?id=14613
llvm-svn: 342004
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These are the folds in Alive;
Name: xor_ult
Pre: isPowerOf2(-C1)
%xor = xor i8 %x, C1
%r = icmp ult i8 %xor, C1
=>
%r = icmp ugt i8 %x, ~C1
Name: xor_ugt
Pre: isPowerOf2(C1+1)
%xor = xor i8 %x, C1
%r = icmp ugt i8 %xor, C1
=>
%r = icmp ugt i8 %x, C1
https://rise4fun.com/Alive/Vty
The ugt case in its simplest form was already handled by DemandedBits,
but that's not ideal as shown in the multi-use test.
I'm not sure if these are all of the symmetrical folds, but I adjusted
the existing code for one of the folds to try to show the similarities.
There's no obvious connection, but this is another preliminary step
for PR14613...
https://bugs.llvm.org/show_bug.cgi?id=14613
llvm-svn: 341997
|
|
|
|
|
|
|
|
|
|
|
|
| |
There were two combines not covered by the check before now, neither of which
actually differed from normal in the benefit analysis.
The most recent seems to be because it was just added at the top of the
function (naturally). The older is from way back in 2008 (r46687) when we just
didn't put those checks in so routinely, and has been diligently maintained
since.
llvm-svn: 341831
|
|
|
|
|
|
|
|
|
|
| |
Support for sgt/slt was added in rL294898, this adds the same cases also for unsigned compares.
This is the Alive proof: https://rise4fun.com/Alive/nyY
Differential Revision: https://reviews.llvm.org/D50972
llvm-svn: 341353
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D50946
llvm-svn: 340231
|
|
|
|
|
|
|
| |
This is a step towards fixing PR37463:
https://bugs.llvm.org/show_bug.cgi?id=37463
llvm-svn: 339875
|
|
|
|
| |
llvm-svn: 339399
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
[[ https://bugs.llvm.org/show_bug.cgi?id=38149 | PR38149 ]]
As discussed in https://reviews.llvm.org/D49179#1158957 and later,
the IR for 'check for [no] signed truncation' pattern can be improved:
https://rise4fun.com/Alive/gBf
^ that pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958 https://bugs.llvm.org/show_bug.cgi?id=21530
in signed case, therefore it is probably a good idea to improve it.
The DAGCombine will reverse this transform, see
https://reviews.llvm.org/D49266
This transform is surprisingly frustrating.
This does not deal with non-splat shift amounts, or with undef shift amounts.
I've outlined what i think the solution should be:
```
// Potential handling of non-splats: for each element:
// * if both are undef, replace with constant 0.
// Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
// * if both are not undef, and are different, bailout.
// * else, only one is undef, then pick the non-undef one.
```
This is a re-commit, as the original patch, committed in rL337190
was reverted in rL337344 as it broke chromium build:
https://bugs.llvm.org/show_bug.cgi?id=38204 and
https://crbug.com/864832
Proofs that the fixed folds are ok: https://rise4fun.com/Alive/VYM
Differential Revision: https://reviews.llvm.org/D49320
llvm-svn: 337376
|
|
|
|
|
|
|
|
|
| |
This reverts r337190 (and a few follow-up commits), which caused the
Chromium build to fail. See
https://bugs.llvm.org/show_bug.cgi?id=38204 and
https://crbug.com/864832
llvm-svn: 337344
|
|
|
|
| |
llvm-svn: 337257
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
[[ https://bugs.llvm.org/show_bug.cgi?id=38149 | PR38149 ]]
As discussed in https://reviews.llvm.org/D49179#1158957 and later,
the IR for 'check for [no] signed truncation' pattern can be improved:
https://rise4fun.com/Alive/gBf
^ that pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958 https://bugs.llvm.org/show_bug.cgi?id=21530
in signed case, therefore it is probably a good idea to improve it.
Proofs for this transform: https://rise4fun.com/Alive/mgu
This transform is surprisingly frustrating.
This does not deal with non-splat shift amounts, or with undef shift amounts.
I've outlined what i think the solution should be:
```
// Potential handling of non-splats: for each element:
// * if both are undef, replace with constant 0.
// Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
// * if both are not undef, and are different, bailout.
// * else, only one is undef, then pick the non-undef one.
```
The DAGCombine will reverse this transform, see
https://reviews.llvm.org/D49266
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: JDevlieghere, rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D49320
llvm-svn: 337190
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D49283
llvm-svn: 337141
|
|
|
|
|
|
|
|
| |
All predicates are handled.
There does not seem to be any other possible folds here.
There are some more folds possible with inverted mask though.
llvm-svn: 337112
|
|
|
|
|
|
|
|
|
|
| |
https://bugs.llvm.org/show_bug.cgi?id=38123
https://rise4fun.com/Alive/I3O
This pattern is not commutative!
We must make sure not to fold the commuted version!
llvm-svn: 337111
|
|
|
|
|
|
|
|
|
|
| |
https://bugs.llvm.org/show_bug.cgi?id=38123
https://rise4fun.com/Alive/I3O
This pattern is not commutative!
We must make sure not to fold the commuted version!
llvm-svn: 337109
|
|
|
|
|
|
|
|
|
|
| |
https://bugs.llvm.org/show_bug.cgi?id=38123
https://rise4fun.com/Alive/I3O
This pattern is not commutative!
We must make sure not to fold the commuted version!
llvm-svn: 337107
|
|
|
|
|
|
|
|
|
|
| |
https://bugs.llvm.org/show_bug.cgi?id=38123
https://rise4fun.com/Alive/I3O
This pattern is not commutative!
We must make sure not to fold the commuted version!
llvm-svn: 337105
|
|
|
|
|
|
|
|
|
|
| |
https://bugs.llvm.org/show_bug.cgi?id=38123
https://rise4fun.com/Alive/Fqp
This pattern is not commutative. But InstSimplify will
already have taken care of the 'commutative' variant.
llvm-svn: 337102
|
|
|
|
|
|
|
|
|
|
| |
https://bugs.llvm.org/show_bug.cgi?id=38123
https://rise4fun.com/Alive/JvS
This pattern is not commutative. But InstSimplify will
already have taken care of the 'commutative' variant.
llvm-svn: 337100
|
|
|
|
|
|
|
|
|
|
| |
https://bugs.llvm.org/show_bug.cgi?id=38123
https://rise4fun.com/Alive/ocb
This pattern is not commutative. But InstSimplify will
already have taken care of the 'commutative' variant.
llvm-svn: 337098
|
|
|
|
|
|
|
|
|
|
| |
https://bugs.llvm.org/show_bug.cgi?id=38123
https://rise4fun.com/Alive/azI
This pattern is not commutative. But InstSimplify will
already have taken care of the 'commutative' variant.
llvm-svn: 337096
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
A complementary fold to D49179.
https://bugs.llvm.org/show_bug.cgi?id=38123
https://rise4fun.com/Alive/Rny
Caveat: one more thing in `test/Transforms/InstCombine/icmp-logical.ll` breaks.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49205
llvm-svn: 336911
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
https://bugs.llvm.org/show_bug.cgi?id=38123
This pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958
https://bugs.llvm.org/show_bug.cgi?id=21530
in unsigned case, therefore it is probably a good idea to improve it.
https://rise4fun.com/Alive/Rny
^ there are more opportunities for folds, i will follow up with them afterwards.
Caveat: this somehow exposes a missing opportunities
in `test/Transforms/InstCombine/icmp-logical.ll`
It seems, the problem is in `foldLogOpOfMaskedICmps()` in `InstCombineAndOrXor.cpp`.
But i'm not quite sure what is wrong, because it calls `getMaskedTypeForICmpPair()`,
which calls `decomposeBitTestICmp()` which should already work for these cases...
As @spatel notes in https://reviews.llvm.org/D49179#1158760,
that code is a rather complex mess, so we'll let it slide.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: yamauchi, majnemer, t.p.northover, llvm-commits
Differential Revision: https://reviews.llvm.org/D49179
llvm-svn: 336834
|
|
|
|
|
|
| |
are done"
llvm-svn: 336410
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch changes order of transform in InstCombineCompares to avoid
performing transforms based on ranges which produce complex bit arithmetics
before more simple things (like folding with constants) are done. See PR37636
for the motivating example.
Differential Revision: https://reviews.llvm.org/D48584
Reviewed By: spatel, lebedev.ri
llvm-svn: 336172
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When iterating users of a multiply in processUMulZExtIdiom, the
call to setOperand in the truncation case may replace the use
being visited; make sure the iterator has been advanced before
doing that replacement.
Reviewers: majnemer, davide
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48192
llvm-svn: 334844
|
|
|
|
|
|
|
|
|
|
| |
dyn_cast.
Inspired by r331508, I did a grep and found these.
Mostly just change from dyn_cast to cast. Some cases also showed a dyn_cast result being converted to bool, so those I changed to isa.
llvm-svn: 331577
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Folding patterns like:
%vec = shufflevector <4 x i8> %insvec, <4 x i8> undef, <4 x i32> zeroinitializer
%cast = bitcast <4 x i8> %vec to i32
%cond = icmp eq i32 %cast, 0
into:
%ext = extractelement <4 x i8> %insvec, i32 0
%cond = icmp eq i32 %ext, 0
Combined with existing rules, this allows us to fold patterns like:
%insvec = insertelement <4 x i8> undef, i8 %val, i32 0
%vec = shufflevector <4 x i8> %insvec, <4 x i8> undef, <4 x i32> zeroinitializer
%cast = bitcast <4 x i8> %vec to i32
%cond = icmp eq i32 %cast, 0
into:
%cond = icmp eq i8 %val, 0
When we construct a splat vector via a shuffle, and bitcast the vector into an integer type for comparison against an integer constant. Then we can simplify the the comparison to compare the splatted value against the integer constant.
Reviewers: spatel, anna, mkazantsev
Reviewed By: spatel
Subscribers: efriedma, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D44997
llvm-svn: 329087
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(A - B) >u A --> A <u B
C <u (C - D) --> C <u D
https://rise4fun.com/Alive/e7j
Name: ugt
%sub = sub i8 %x, %y
%cmp = icmp ugt i8 %sub, %x
=>
%cmp = icmp ult i8 %x, %y
Name: ult
%sub = sub i8 %x, %y
%cmp = icmp ult i8 %x, %sub
=>
%cmp = icmp ult i8 %x, %y
This should fix:
https://bugs.llvm.org/show_bug.cgi?id=36969
llvm-svn: 329011
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This continues the FP constant pattern matching improvements from:
https://reviews.llvm.org/rL327627
https://reviews.llvm.org/rL327339
https://reviews.llvm.org/rL327307
Several integer constant matchers also have this ability. I'm
separating matching of integer/pointer null from FP positive zero
and renaming/commenting to make the functionality clearer.
llvm-svn: 328461
|
|
|
|
|
|
| |
This is an extension of rL328426 as noted in D44367.
llvm-svn: 328448
|