| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can simplify (or (icmp X, C1), (icmp X, C2)) to 'true' or one of the icmps in many cases.
I had to check some of these with Alive to prove to myself it's right, but everything seems
to check out. Eg, the deleted code in instcombine was completely ignoring predicates with
mismatched signedness.
This is a follow-up to:
https://reviews.llvm.org/rL301260
https://reviews.llvm.org/D32143
llvm-svn: 302370
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was originally checked in here:
https://reviews.llvm.org/rL301923
And reverted here:
https://reviews.llvm.org/rL301924
Because there's a clang test that would fail after this. I fixed/removed the
offending CHECK lines in:
https://reviews.llvm.org/rL301928
So let's try this again. Original commit message:
This is the fold that causes the infinite loop in BoringSSL
(https://github.com/google/boringssl/blob/master/crypto/cipher/e_rc2.c)
when we fix instcombine demanded bits to prefer 'not' ops as in https://reviews.llvm.org/D32255.
There are 2 or 3 problems with dyn_castNotVal, and I don't think we can
reinstate https://reviews.llvm.org/D32255 until dyn_castNotVal is completely eliminated.
1. As shown here, it transforms 'not' into random xor. This transform is harmful to SCEV and codegen because 'not' can often be folded while random xor cannot.
2. It does not transform vector constants. This is actually a good thing, but if you don't believe the above argument, then we shouldn't have excluded vectors.
3. It tries to avoid transforming not(not(X)). That's nice, but it doesn't match the greedy nature of instcombine. If we DeMorganize a pattern that has an extra 'not' in it: ~(~(~X) & Y) --> (~X | ~Y)
That's just another case of DeMorgan, so we should trust that we'll fold that pattern too: (~X | ~ Y) --> ~(X & Y)
Differential Revision: https://reviews.llvm.org/D32665
llvm-svn: 301929
|
|
|
|
|
|
| |
There's a clang test that is wrongly using -O1 and failing after this commit.
llvm-svn: 301924
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the fold that causes the infinite loop in BoringSSL
(https://github.com/google/boringssl/blob/master/crypto/cipher/e_rc2.c)
when we fix instcombine demanded bits to prefer 'not' ops as in D32255.
There are 2 or 3 problems with dyn_castNotVal, and I don't think we can
reinstate D32255 until dyn_castNotVal is completely eliminated.
1. As shown here, it transforms 'not' into random xor. This transform is
harmful to SCEV and codegen because 'not' can often be folded while
random xor cannot.
2. It does not transform vector constants. This is actually a good thing,
but if you don't believe the above argument, then we shouldn't have
excluded vectors.
3. It tries to avoid transforming not(not(X)). That's nice, but it doesn't
match the greedy nature of instcombine. If we DeMorganize a pattern
that has an extra 'not' in it:
~(~(~X) & Y) --> (~X | ~Y)
That's just another case of DeMorgan, so we should trust that we'll fold
that pattern too:
(~X | ~ Y) --> ~(X & Y)
Differential Revision: https://reviews.llvm.org/D32665
llvm-svn: 301923
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If we have ~(~X & Y), it only makes sense to transform it to (X | ~Y) when we do not need
the intermediate (~X & Y) value. In that case, we would need an extra instruction to
generate ~Y + 'or' (as shown in the test changes).
It's ok if we have multiple uses of ~X or Y, however. In those cases, we may not reduce the
instruction count or critical path, but we might improve throughput because we can generate
~X and ~Y in parallel. Whether that actually makes perf sense or not for a target is something
we can't answer in IR.
Differential Revision: https://reviews.llvm.org/D32703
llvm-svn: 301848
|
|
|
|
|
|
|
| |
Matching any random value would be very wrong:
https://bugs.llvm.org/show_bug.cgi?id=32830
llvm-svn: 301594
|
|
|
|
|
|
| |
AssumptionCache, DominatorTree, TargetLibraryInfo everywhere.
llvm-svn: 301464
|
|
|
|
|
|
|
|
| |
The matching here wasn't able to handle all the possible commutes. It always assumed the not would be on the left of the xor, but that's not guaranteed.
Differential Revision: https://reviews.llvm.org/D32474
llvm-svn: 301316
|
|
|
|
| |
llvm-svn: 301294
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can simplify (and (icmp X, C1), (icmp X, C2)) to one of the icmps in many cases.
I had to check some of these with Alive to prove to myself it's right, but everything
seems to check out. Eg, the code in instcombine was completely ignoring predicates with
mismatched signedness.
Handling or-of-icmps would be a follow-up step.
Differential Revision: https://reviews.llvm.org/D32143
llvm-svn: 301260
|
|
|
|
|
|
|
|
|
|
|
| |
This is a straight cut and paste, but there's a bigger problem: if this
fold exists for simplifyOr, there should be a DeMorganized version for
simplifyAnd. But more than that, we have a patchwork of ad hoc logic
optimizations in InstCombine. There should be some structure to ensure
that we're not missing sibling folds across and/or/xor.
llvm-svn: 301213
|
|
|
|
|
|
|
|
|
|
|
|
| |
We handled all of the commuted variants for plain xor already,
although they were scattered around and sometimes folded less
efficiently using distributive laws. We had no folds for not-xor.
Handling all of these patterns consistently is part of trying to
reinstate:
https://reviews.llvm.org/rL300977
llvm-svn: 301144
|
|
|
|
|
|
|
|
|
| |
There's probably some better way to write this that eliminates the
code duplication without hurting readability, but at least this
eliminates the logic holes and is hopefully slightly more efficient
than creating new instructions.
llvm-svn: 301129
|
|
|
|
|
|
|
|
|
|
|
| |
The later uses of dyn_castNotVal in this block are either
incomplete (doesn't handle vector constants) or overstepping
(shouldn't handle constants at all), but this first use is
just unnecessary. 'I' is obviously not a constant, and it
can't be a not-of-a-not because that would already be
instsimplified.
llvm-svn: 301088
|
|
|
|
|
|
|
|
| |
getSignBit is a static function that creates an APInt with only the sign bit set. getSignMask seems like a better name to convey its functionality. In fact several places use it and then store in an APInt named SignMask.
Differential Revision: https://reviews.llvm.org/D32108
llvm-svn: 300856
|
|
|
|
|
|
|
|
|
|
| |
So, `cast<Instruction>` is not guaranteed to succeed. Change the
code so that we create a new constant and use it in the newly
created instruction, as it's done in other places in InstCombine.
OK'ed by Sanjay/Craig. Fixes PR32686.
llvm-svn: 300495
|
|
|
|
|
|
| |
vector constants
llvm-svn: 300402
|
|
|
|
|
|
|
|
|
|
| |
...when C1 differs from C2 by one bit and C1 <u C2:
http://rise4fun.com/Alive/Vuo
And move related folds to a helper function. This reduces code duplication and
will make it easier to remove the scalar-only restriction as a follow-up step.
llvm-svn: 300364
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is effectively a retry of:
https://reviews.llvm.org/rL299851
but now we have tests and an assert to make sure the bug
that was exposed with that attempt will not happen again.
I'll fix the code duplication and missing sibling fold next,
but I want to make this change as small as possible to reduce
risk since I messed it up last time.
This should fix:
https://bugs.llvm.org/show_bug.cgi?id=32524
llvm-svn: 300236
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It's less efficient to produce 'ule' than 'ult' since we know we're going to
canonicalize to 'ult', but we shouldn't have duplicated code for these folds.
As a trade-off, this was a pretty terrible way to make a '2'. :)
if (LHSC == SubOne(RHSC))
AddC = ConstantExpr::getSub(AddOne(RHSC), LHSC);
The next steps are to share the code to fix PR32524 and add the missing 'and'
fold that was left out when PR14708 was fixed:
https://bugs.llvm.org/show_bug.cgi?id=14708
llvm-svn: 300222
|
|
|
|
| |
llvm-svn: 300202
|
|
|
|
|
|
|
|
|
|
|
|
| |
One potential way to make InstCombine (very slightly?) faster is to recycle instructions
when possible instead of creating new ones. It's not explicitly stated AFAIK, but we don't
consider this an "InstSimplify". We could, however, make a new layer to house transforms
like this if that makes InstCombine more manageable (just throwing out an idea; not sure
how much opportunity is actually here).
Differential Revision: https://reviews.llvm.org/D31863
llvm-svn: 300067
|
|
|
|
|
|
| |
code. NFC
llvm-svn: 300030
|
|
|
|
|
|
| |
This is a candidate culprit for multiple bot fails, so reverting pending investigation.
llvm-svn: 299955
|
|
|
|
| |
llvm-svn: 299871
|
|
|
|
|
|
|
|
|
|
|
| |
Also, make the same change in and-of-icmps and remove a hack for detecting that case.
Finally, add some FIXME comments because the code duplication here is awful.
This should fix the remaining IR problem noted in:
https://bugs.llvm.org/show_bug.cgi?id=32524
llvm-svn: 299851
|
|
|
|
|
|
| |
transform.
llvm-svn: 299837
|
|
|
|
|
|
|
|
| |
matcher checks in visitXor.
The matchers themselves should be enough.
llvm-svn: 299835
|
|
|
|
|
|
|
|
| |
very similar (A&B)^B -> ~A & B code. This should be NFC except for the addition of hasOneUse check.
I think this code is still overly complicated and should use matchers, but first I wanted to make it consistent.
llvm-svn: 299834
|
|
|
|
| |
llvm-svn: 299833
|
|
|
|
|
|
|
|
|
|
|
|
| |
"PredicatesFoldable" returns false for signed/unsigned mismatched pairs,
so these cases should never exist. We'll default to 'unreachable' on those
predicate combos instead.
Most of what's left in these switches belongs in InstSimplify (and may
already be there), so there's probably more that can be done to reduce
this code.
llvm-svn: 299829
|
|
|
|
|
|
|
|
| |
This adds support for these combines for vectors
(X^C)|Y -> (X|Y)^C iff Y&C == 0
Y|(X^C) -> (X|Y)^C iff Y&C == 0
llvm-svn: 299822
|
|
|
|
| |
llvm-svn: 299821
|
|
|
|
| |
llvm-svn: 299819
|
|
|
|
|
|
| |
We usually give constants a 'C' somewhere in the name...
llvm-svn: 299818
|
|
|
|
| |
llvm-svn: 299747
|
|
|
|
|
|
| |
-> (A | B).
llvm-svn: 299737
|
|
|
|
|
|
|
|
| |
This combine is fully handled by SimplifyDemandedInstructionBits as of r299658 where I fixed this code to ensure the Add/Sub had only a single user. Otherwise it would fire and create additional instructions. That fix resulted in an improvement to code generated for tsan which is why I committed it before deleting.
Differential Revision: https://reviews.llvm.org/D31543
llvm-svn: 299704
|
|
|
|
|
|
| |
single use resulting in extra instructions being created.
llvm-svn: 299658
|
|
|
|
|
|
|
| |
There must be some opportunity to refactor big chunks of nearly duplicated code in FoldOrOfICmps / FoldAndOfICmps.
Also, none of this works with vectors, but it should.
llvm-svn: 299568
|
|
|
|
|
|
|
|
|
|
| |
selects and phis
Currently we only fold with ConstantInt RHS. This generalizes to any Constant RHS.
Differential Revision: https://reviews.llvm.org/D31610
llvm-svn: 299466
|
|
|
|
|
|
|
|
|
|
| |
(C1|C2) when C1 & C2 have common bits.
It turns out that SimplifyDemandedInstructionBits will get called earlier and remove bits from C1 first. Effectively doing (X & (C1&C2)) | C2. So by the time it got to this check there could be no common bits.
I think the DAGCombiner has the same check but its check can be executed because it handles demanded bits later. I'll look at it next.
llvm-svn: 299384
|
|
|
|
|
|
| |
in DAGCombine and InstCombine. NFC
llvm-svn: 299378
|
|
|
|
|
|
|
|
| |
One of the tsan bots started failing at this commit. I don't see anything obviously wrong with the commit so trying this to see if it recovers.
Failing log: http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-autoconf/builds/6792
llvm-svn: 299366
|
|
|
|
|
|
|
|
|
|
|
|
| |
1. Improve enum, function, and variable names.
2. Improve comments.
3. Fix variable capitalization.
4. Run clang-format.
As an existing code comment suggests, this should work with vector types / splat constants too,
so making this look right first will reduce the diffs needed for that change.
llvm-svn: 299365
|
|
|
|
|
|
| |
SimplifyDemandedInstructionBits. NFCI
llvm-svn: 299349
|
|
|
|
|
|
|
|
|
|
| |
an Instruction.
The callers have already performed the necessary cast before calling. This allows us to remove a comment that says the instruction must be a BinaryOperator and make it explicit in the argument type.
Had to add a default case to the switch because BinaryOperator::getOpcode() returns a BinaryOps enum.
llvm-svn: 299339
|
|
|
|
|
|
|
|
|
|
| |
As far as I can tell this combine is fully handled by SimplifyDemandedInstructionBits.
I was only looking at this because it is the only user of APIntOps::isShiftedMask which is itself broken. As demonstrated by r299187. I was going to fix isShiftedMask and needed to make sure we had coverage for the new cases it would expose to this combine. But looks like we can nuke it instead.
Differential Revision: https://reviews.llvm.org/D31543
llvm-svn: 299337
|
|
|
|
|
|
|
|
|
|
| |
in MathExtras.h
This removes a parameter from the routine that was responsible for a lot of the issue. It was a bit count that had to be set to the BitWidth of the APInt and would get passed to getLowBitsSet. This guaranteed the call to getLowBitsSet would create an all ones value. This was then compared to (V | (V-1)). So the only shifted masks we detected had to have the MSB set.
The one in tree user is a transform in InstCombine that never fires due to earlier transforms covering the case better. I've submitted a patch to remove it completely, but for now I've just adapted it to the new interface for isShiftedMask.
llvm-svn: 299273
|
|
|
|
|
|
|
|
| |
reduce the LHS of a sub to 0. This should now be fully handled by SimplifyDemandedInstructionBits now.
Now that we call ShrinkDemandedConstant on the RHS of sub this should be taken care of. This code doesn't trigger on any in tree regressions, but did before ShrinkDemandedConstant was added to the RHS.
llvm-svn: 298644
|