| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The expression is redundant on both side of operator |.
detected by : http://reviews.llvm.org/D19451
Reviewers: rnk, majnemer
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D19459
llvm-svn: 267458
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Given that we're not actually reducing the instruction count in the included
regression tests, I think we would call this a canonicalization step.
The motivation comes from the example in PR26702:
https://llvm.org/bugs/show_bug.cgi?id=26702
If we hoist the bitwise logic ahead of the bitcast, the previously unoptimizable
example of:
define <4 x i32> @is_negative(<4 x i32> %x) {
%lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
%not = xor <4 x i32> %lobit, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc = bitcast <4 x i32> %not to <2 x i64>
%notnot = xor <2 x i64> %bc, <i64 -1, i64 -1>
%bc2 = bitcast <2 x i64> %notnot to <4 x i32>
ret <4 x i32> %bc2
}
Simplifies to the expected:
define <4 x i32> @is_negative(<4 x i32> %x) {
%lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
ret <4 x i32> %lobit
}
Differential Revision: http://reviews.llvm.org/D17583
llvm-svn: 262645
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is part of the payoff for the refactoring in:
http://reviews.llvm.org/rL261649
http://reviews.llvm.org/rL261707
In addition to removing a pile of duplicated code, the xor case was
missing the optimization for vector types because it checked
"SrcTy->isIntegerTy()" rather than "SrcTy->isIntOrIntVectorTy()"
like 'and' and 'or' were already doing.
This solves part of:
https://llvm.org/bugs/show_bug.cgi?id=26702
llvm-svn: 261750
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Note: The 'and' case in foldCastedBitwiseLogic() is inheriting one extra
check from the nearly identical 'or' case:
if ((!isa<ICmpInst>(Cast0Src) || !isa<ICmpInst>(Cast1Src))
But I'm not sure how to expose that difference in a regression test.
Without that check, the 'or' path will infinite loop on:
test/Transforms/InstCombine/zext-or-icmp.ll
because the zext-or-icmp fold is attempting a reverse transform.
The refactoring should extend to the 'xor' case next to solve part of
PR26702.
llvm-svn: 261707
|
| |
|
|
|
|
| |
Less indenting, named local variables, more descriptive names.
llvm-svn: 261659
|
| |
|
|
| |
llvm-svn: 261652
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This is a straight cut and paste of the existing code and is intended to
be the first step in solving part of PR26702:
https://llvm.org/bugs/show_bug.cgi?id=26702
We should be able to reuse most of this and delete the nearly identical
existing code in visitOr(). Then, we can enhance visitXor() to use the
same code too.
llvm-svn: 261649
|
| |
|
|
| |
llvm-svn: 259425
|
| |
|
|
| |
llvm-svn: 258062
|
| |
|
|
| |
llvm-svn: 258059
|
| |
|
|
| |
llvm-svn: 258058
|
| |
|
|
| |
llvm-svn: 258057
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are several requirements that ended up with this design;
1. Matching bitreversals is too heavyweight for InstCombine and doesn't really need to be done so early.
2. Bitreversals and byteswaps are very related in their matching logic.
3. We want to implement support for matching more advanced bswap/bitreverse patterns like partial bswaps/bitreverses.
4. Bswaps are best matched early in InstCombine.
The result of these is that a new utility function is created in Transforms/Utils/Local.h that can be configured to search for bswaps, bitreverses or both. InstCombine uses it to find only bswaps, CGP uses it to find only bitreversals.
We can then extend the matching logic in one place only.
llvm-svn: 257875
|
| |
|
|
| |
llvm-svn: 255511
|
| |
|
|
|
|
| |
MatchBSwap has most of the functionality to match bit reversals already. If we switch it from looking at bytes to individual bits and remove a few early exits, we can extend the main recursive function to match any sequence of ORs, ANDs and shifts that assemble a value from different parts of another, base value. Once we have this bit->bit mapping, we can very simply detect if it is appropriate for a bswap or bitreverse.
llvm-svn: 255334
|
| |
|
|
|
|
|
|
|
|
| |
== C2) -> (A | (C1 ^ C2)) == C2 when C1 ^ C2 is a power of 2.
Differential Revision: http://reviews.llvm.org/D14223
Patch by Amaury SECHET!
llvm-svn: 254518
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
intrinsic call (PR24886)
This is a partial fix for PR24886:
https://llvm.org/bugs/show_bug.cgi?id=24886
Without this IR transform, the backend (x86 at least) was producing inefficient code.
This patch is making 2 assumptions:
1. The canonical form of a fabs() operation is, in fact, the LLVM fabs() intrinsic.
2. The high bit of an FP value is always the sign bit; as noted in the bug report, this isn't specified by the LangRef.
Differential Revision: http://reviews.llvm.org/D13076
llvm-svn: 249702
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a fix for PR22723:
https://llvm.org/bugs/show_bug.cgi?id=22723
My first attempt at this was to change what I thought was the root problem:
xor (zext i1 X to i32), 1 --> zext (xor i1 X, true) to i32
...but we create the opposite pattern in InstCombiner::visitZExt(), so infinite loop!
My next idea was to fix the matchIfNot() implementation in PatternMatch, but that would
mean potentially returning a different size for the match than what was input. I think
this would require all users of m_Not to check the size of the returned match, so I
abandoned that idea.
I settled on just fixing the exact case presented in the PR. This patch does allow the
2 functions in PR22723 to compile identically (x86):
bool test(bool x, bool y) { return !x | !y; }
bool test(bool x, bool y) { return !x || !y; }
...
andb %sil, %dil
xorb $1, %dil
movb %dil, %al
retq
Differential Revision: http://reviews.llvm.org/D12705
llvm-svn: 248634
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The byte-swap recognizer can now notice that this
```
uint32_t bswap(uint32_t x)
{
x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16;
x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8;
return x;
}
```
is a bswap. Fixes PR23863.
Reviewers: nlewycky, hfinkel, hans, jmolloy, rengolin
Subscribers: majnemer, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D12637
llvm-svn: 248482
|
| |
|
|
| |
llvm-svn: 247061
|
| |
|
|
| |
llvm-svn: 247043
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: We know that -x & 1 is equivalent to x & 1, avoid using negation for testing if a negative integer is even or odd.
Reviewers: majnemer
Subscribers: junbuml, mssimpso, gberry, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D12156
llvm-svn: 245569
|
| |
|
|
|
|
| |
created a value with the wrong type. Fixes PR24458!
llvm-svn: 245119
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change splits `makeICmpRegion` into `makeAllowedICmpRegion` and
`makeSatisfyingICmpRegion` with slightly different contracts. The first
one is useful for determining what values some expression //may// take,
given that a certain `icmp` evaluates to true. The second one is useful
for determining what values are guaranteed to //satisfy// a given
`icmp`.
Reviewers: nlewycky
Reviewed By: nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8345
llvm-svn: 232575
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
|
| |
|
|
|
|
|
|
|
|
| |
This case is interesting because ScalarEvolutionExpander lowers min(a,
b) as ~max(~a,~b). I think the profitability heuristics can be made
more clever/aggressive, but this is a start.
Differential Revision: http://reviews.llvm.org/D7821
llvm-svn: 230285
|
| |
|
|
|
|
|
|
| |
vectors
The loop vectorizer can create this pattern.
llvm-svn: 228954
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
creating a non-internal header file for the InstCombine pass.
I thought about calling this InstCombiner.h or in some way more clearly
associating it with the InstCombiner clas that it is primarily defining,
but there are several other utility interfaces defined within this for
InstCombine. If, in the course of refactoring, those end up moving
elsewhere or going away, it might make more sense to make this the
combiner's header alone.
Naturally, this is a bikeshed to a certain degree, so feel free to lobby
for a different shade of paint if this name just doesn't suit you.
llvm-svn: 226783
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a cache of assumptions for a single function, and an immutable pass that
manages those caches.
The motivation for this change is two fold. Immutable analyses are
really hacks around the current pass manager design and don't exist in
the new design. This is usually OK, but it requires that the core logic
of an immutable pass be reasonably partitioned off from the pass logic.
This change does precisely that. As a consequence it also paves the way
for the *many* utility functions that deal in the assumptions to live in
both pass manager worlds by creating an separate non-pass object with
its own independent API that they all rely on. Now, the only bits of the
system that deal with the actual pass mechanics are those that actually
need to deal with the pass mechanics.
Once this separation is made, several simplifications become pretty
obvious in the assumption cache itself. Rather than using a set and
callback value handles, it can just be a vector of weak value handles.
The callers can easily skip the handles that are null, and eventually we
can wrap all of this up behind a filter iterator.
For now, this adds boiler plate to the various passes, but this kind of
boiler plate will end up making it possible to port these passes to the
new pass manager, and so it will end up factored away pretty reasonably.
llvm-svn: 225131
|
| |
|
|
|
|
|
| |
We already utilize this logic for reducing overflow intrinsics, it makes
sense to reuse it for normal multiplies as well.
llvm-svn: 224847
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Added instcombine optimizations for BSWAP with AND/OR/XOR ops:
OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
Since its just a one liner, I've also added BSWAP to the DAGCombiner equivalent as well:
fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))
Refactored bswap-fold tests to use FileCheck instead of just checking that the bswaps had gone.
Differential Revision: http://reviews.llvm.org/D6407
llvm-svn: 223349
|
| |
|
|
|
|
|
|
|
| |
Try to convert two compares of a signed range check into a single unsigned compare.
Examples:
(icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
(icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
llvm-svn: 223224
|
| |
|
|
|
|
|
|
|
|
|
|
| |
We may be in a situation where the icmps might not be near each other in
a tree of or instructions. Try to dig out related compare instructions
and see if they combine.
N.B. This won't fire on deep trees of compares because rewritting the
tree might end up creating a net increase of IR. We may have to resort
to something more sophisticated if this is a real problem.
llvm-svn: 222928
|
| |
|
|
|
|
|
|
|
| |
It is impossible for (x & INT_MAX) == 0 && x == INT_MAX to ever be true.
While this sort of reasoning should normally live in InstSimplify,
the machinery that derives this result is not trivial to split out.
llvm-svn: 222230
|
| |
|
|
|
|
| |
No functional change intended.
llvm-svn: 222229
|
| |
|
|
|
|
| |
<u C-1)
llvm-svn: 219585
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
|
| |
|
|
|
|
|
| |
The special case did not work when run under -reassociate and can easily
be expressed by a further generalization of an existing pattern.
llvm-svn: 217227
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
consider: (and (icmp X, Y), (and Z, (icmp A, B)))
It may be possible to combine (icmp X, Y) with (icmp A, B).
If we successfully combine, create an 'and' instruction with Z.
This fixes PR20814.
N.B. There is room for improvement after this change but I'm not
convinced it's worth chasing yet.
llvm-svn: 216814
|
| |
|
|
|
|
|
|
|
|
|
|
| |
(X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
(X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
(X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
These patterns were previously handled separately in visitAnd()/visitOr()/visitXor().
Differential Revision: http://reviews.llvm.org/D4951
llvm-svn: 216443
|
| |
|
|
|
|
| |
Adapted from a patch by Richard Smith, test-case written by me.
llvm-svn: 216157
|
| |
|
|
|
|
| |
C2), C3) to (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3) under certain condition
llvm-svn: 216135
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Proof using CVC3 follows:
$ cat t.cvc
A, B : BITVECTOR(32);
QUERY BVXOR((A & ~B),(~A & B)) = BVXOR(A,B);
$ cvc3 t.cvc
Valid.
Differential Revision: http://reviews.llvm.org/D4898
llvm-svn: 215974
|
| |
|
|
| |
llvm-svn: 215970
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Proof using CVC3 follows:
$ cat t.cvc
A, B : BITVECTOR(32);
QUERY BVXOR((A | ~B),(~A |B)) = BVXOR(A,B);
$ cvc3 t.cvc
Valid.
Patch by Mayur Pandey!
Differential Revision: http://reviews.llvm.org/D4883
llvm-svn: 215621
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Transform ((B | C) & A) | B --> B | (A & C)
Z3 Link: http://rise4fun.com/Z3/hP6p
Patch by Sonam Kumari!
Differential Revision: http://reviews.llvm.org/D4865
llvm-svn: 215619
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Correctness proof of the transform using CVC3-
$ cat t.cvc
A, B : BITVECTOR(32);
QUERY BVXOR(A | B, BVXOR(A,B) ) = A & B;
$ cvc3 t.cvc
Valid.
llvm-svn: 215524
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D4653
llvm-svn: 214479
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D4628
llvm-svn: 214478
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D4652
llvm-svn: 214477
|