summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/IPO/StripSymbols.cpp
Commit message (Collapse)AuthorAgeFilesLines
* Move Analysis/Utils/Local.h back to TransformsDavid Blaikie2018-06-041-1/+1
| | | | | | | | | | Review feedback from r328165. Split out just the one function from the file that's used by Analysis. (As chandlerc pointed out, the original change only moved the header and not the implementation anyway - which was fine for the one function that was used (since it's a template/inlined in the header) but not in general) llvm-svn: 333954
* Fix a couple of layering violations in TransformsDavid Blaikie2018-03-211-1/+1
| | | | | | | | | | | | | Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering. Transforms depends on Transforms/Utils, not the other way around. So remove the header and the "createStripGCRelocatesPass" function declaration (& definition) that is unused and motivated this dependency. Move Transforms/Utils/Local.h into Analysis because it's used by Analysis/MemoryBuiltins.cpp. llvm-svn: 328165
* Sort the remaining #include lines in include/... and lib/....Chandler Carruth2017-06-061-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | I did this a long time ago with a janky python script, but now clang-format has built-in support for this. I fed clang-format every line with a #include and let it re-sort things according to the precise LLVM rules for include ordering baked into clang-format these days. I've reverted a number of files where the results of sorting includes isn't healthy. Either places where we have legacy code relying on particular include ordering (where possible, I'll fix these separately) or where we have particular formatting around #include lines that I didn't want to disturb in this patch. This patch is *entirely* mechanical. If you get merge conflicts or anything, just ignore the changes in this patch and run clang-format over your #include lines in the files. Sorry for any noise here, but it is important to keep these things stable. I was seeing an increasing number of patches with irrelevant re-ordering of #include lines because clang-format was used. This patch at least isolates that churn, makes it easy to skip when resolving conflicts, and gets us to a clean baseline (again). llvm-svn: 304787
* [StripDeadDebug/DIFinder] Track inlined SPsKeno Fischer2017-04-111-4/+3
| | | | | | | | | | | | | | | | | | | | Summary: In rL299692 I improved strip-dead-debug-info's ability to drop CUs that are not referenced from the current module. However, in doing so I neglected to realize that some SPs could be referenced entirely from inlined functions. It appears I was not the only one to make this mistake, because DebugInfoFinder, doesn't find those SPs either. Fix this in DebugInfoFinder and then use that to make sure not to drop those CUs in strip-dead-debug-info. Reviewers: aprantl Reviewed By: aprantl Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D31904 llvm-svn: 299936
* [StripDeadDebugInfo] Drop dead CUs entirelyKeno Fischer2017-04-061-0/+25
| | | | | | | | | | | | | Summary: Prior to this while it would delete the dead DIGlobalVariables, it would leave dead DICompileUnits and everything referenced therefrom. For a bit bitcode file with thousands of compile units those dead nodes easily outnumbered the real ones. Clean that up. Reviewed By: aprantl Differential Revision: https://reviews.llvm.org/D31720 llvm-svn: 299692
* [IR] Remove the DIExpression field from DIGlobalVariable.Adrian Prantl2016-12-201-7/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements PR31013 by introducing a DIGlobalVariableExpression that holds a pair of DIGlobalVariable and DIExpression. Currently, DIGlobalVariables holds a DIExpression. This is not the best way to model this: (1) The DIGlobalVariable should describe the source level variable, not how to get to its location. (2) It makes it unsafe/hard to update the expressions when we call replaceExpression on the DIGLobalVariable. (3) It makes it impossible to represent a global variable that is in more than one location (e.g., a variable with multiple DW_OP_LLVM_fragment-s). We also moved away from attaching the DIExpression to DILocalVariable for the same reasons. This reapplies r289902 with additional testcase upgrades and a change to the Bitcode record for DIGlobalVariable, that makes upgrading the old format unambiguous also for variables without DIExpressions. <rdar://problem/29250149> https://llvm.org/bugs/show_bug.cgi?id=31013 Differential Revision: https://reviews.llvm.org/D26769 llvm-svn: 290153
* Revert "[IR] Remove the DIExpression field from DIGlobalVariable."Adrian Prantl2016-12-161-10/+7
| | | | | | | | | | | | | | | | | This reverts commit 289920 (again). I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable has not DIExpression. Unfortunately it is not possible to safely upgrade these variables without adding a flag to the bitcode record indicating which version they are. My plan of record is to roll the planned follow-up patch that adds a unit: field to DIGlobalVariable into this patch before recomitting. This way we only need one Bitcode upgrade for both changes (with a version flag in the bitcode record to safely distinguish the record formats). Sorry for the churn! llvm-svn: 289982
* [IR] Remove the DIExpression field from DIGlobalVariable.Adrian Prantl2016-12-161-7/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements PR31013 by introducing a DIGlobalVariableExpression that holds a pair of DIGlobalVariable and DIExpression. Currently, DIGlobalVariables holds a DIExpression. This is not the best way to model this: (1) The DIGlobalVariable should describe the source level variable, not how to get to its location. (2) It makes it unsafe/hard to update the expressions when we call replaceExpression on the DIGLobalVariable. (3) It makes it impossible to represent a global variable that is in more than one location (e.g., a variable with multiple DW_OP_LLVM_fragment-s). We also moved away from attaching the DIExpression to DILocalVariable for the same reasons. This reapplies r289902 with additional testcase upgrades. <rdar://problem/29250149> https://llvm.org/bugs/show_bug.cgi?id=31013 Differential Revision: https://reviews.llvm.org/D26769 llvm-svn: 289920
* Revert "[IR] Remove the DIExpression field from DIGlobalVariable."Adrian Prantl2016-12-161-10/+7
| | | | | | This reverts commit 289902 while investigating bot berakage. llvm-svn: 289906
* [IR] Remove the DIExpression field from DIGlobalVariable.Adrian Prantl2016-12-161-7/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements PR31013 by introducing a DIGlobalVariableExpression that holds a pair of DIGlobalVariable and DIExpression. Currently, DIGlobalVariables holds a DIExpression. This is not the best way to model this: (1) The DIGlobalVariable should describe the source level variable, not how to get to its location. (2) It makes it unsafe/hard to update the expressions when we call replaceExpression on the DIGLobalVariable. (3) It makes it impossible to represent a global variable that is in more than one location (e.g., a variable with multiple DW_OP_LLVM_fragment-s). We also moved away from attaching the DIExpression to DILocalVariable for the same reasons. <rdar://problem/29250149> https://llvm.org/bugs/show_bug.cgi?id=31013 Differential Revision: https://reviews.llvm.org/D26769 llvm-svn: 289902
* Don't create a SymbolTable in Function when the LLVMContext discards value ↵Mehdi Amini2016-09-171-1/+2
| | | | | | | | | | | | | | names (NFC) The ValueSymbolTable is used to detect name conflict and rename instructions automatically. This is not needed when the value names are automatically discarded by the LLVMContext. No functional change intended, just saving a little bit of memory. This is a recommit of r281806 after fixing the accessor to return a pointer instead of a reference and updating all the call-sites. llvm-svn: 281813
* DebugInfo: New metadata representation for global variables.Peter Collingbourne2016-09-131-9/+8
| | | | | | | | | | | | | This patch reverses the edge from DIGlobalVariable to GlobalVariable. This will allow us to more easily preserve debug info metadata when manipulating global variables. Fixes PR30362. A program for upgrading test cases is attached to that bug. Differential Revision: http://reviews.llvm.org/D20147 llvm-svn: 281284
* Apply clang-tidy's modernize-loop-convert to most of lib/Transforms.Benjamin Kramer2016-06-261-5/+5
| | | | | | Only minor manual fixes. No functionality change intended. llvm-svn: 273808
* Re-commit optimization bisect support (r267022) without new pass manager ↵Andrew Kaylor2016-04-221-0/+11
| | | | | | | | | | support. The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling). Differential Revision: http://reviews.llvm.org/D19172 llvm-svn: 267231
* Revert "Initial implementation of optimization bisect support."Vedant Kumar2016-04-221-11/+0
| | | | | | | | This reverts commit r267022, due to an ASan failure: http://lab.llvm.org:8080/green/job/clang-stage2-cmake-RgSan_check/1549 llvm-svn: 267115
* Initial implementation of optimization bisect support.Andrew Kaylor2016-04-211-0/+11
| | | | | | | | | | | | This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations. The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used. The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way. Differential Revision: http://reviews.llvm.org/D19172 llvm-svn: 267022
* [NFC] Header cleanupMehdi Amini2016-04-181-1/+0
| | | | | | | | | | | | | | Removed some unused headers, replaced some headers with forward class declarations. Found using simple scripts like this one: clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap' Patch by Eugene Kosov <claprix@yandex.ru> Differential Revision: http://reviews.llvm.org/D19219 From: Mehdi Amini <mehdi.amini@apple.com> llvm-svn: 266595
* [PR27284] Reverse the ownership between DICompileUnit and DISubprogram.Adrian Prantl2016-04-151-22/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently each Function points to a DISubprogram and DISubprogram has a scope field. For member functions the scope is a DICompositeType. DIScopes point to the DICompileUnit to facilitate type uniquing. Distinct DISubprograms (with isDefinition: true) are not part of the type hierarchy and cannot be uniqued. This change removes the subprograms list from DICompileUnit and instead adds a pointer to the owning compile unit to distinct DISubprograms. This would make it easy for ThinLTO to strip unneeded DISubprograms and their transitively referenced debug info. Motivation ---------- Materializing DISubprograms is currently the most expensive operation when doing a ThinLTO build of clang. We want the DISubprogram to be stored in a separate Bitcode block (or the same block as the function body) so we can avoid having to expensively deserialize all DISubprograms together with the global metadata. If a function has been inlined into another subprogram we need to store a reference the block containing the inlined subprogram. Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script that updates LLVM IR testcases to the new format. http://reviews.llvm.org/D19034 <rdar://problem/25256815> llvm-svn: 266446
* DI: Reverse direction of subprogram -> function edge.Peter Collingbourne2015-11-051-1/+7
| | | | | | | | | | | | | | | | | | | | | | | Previously, subprograms contained a metadata reference to the function they described. Because most clients need to get or set a subprogram for a given function rather than the other way around, this created unneeded inefficiency. For example, many passes needed to call the function llvm::makeSubprogramMap() to build a mapping from functions to subprograms, and the IR linker needed to fix up function references in a way that caused quadratic complexity in the IR linking phase of LTO. This change reverses the direction of the edge by storing the subprogram as function-level metadata and removing DISubprogram's function field. Since this is an IR change, a bitcode upgrade has been provided. Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is attached to the PR. Differential Revision: http://reviews.llvm.org/D14265 llvm-svn: 252219
* IPO: Remove implicit ilist iterator conversions, NFCDuncan P. N. Exon Smith2015-10-131-2/+2
| | | | llvm-svn: 250187
* Use foreach loop over constant operands. NFC.Pete Cooper2015-06-251-3/+3
| | | | | | | A number of places had explicit loops over Constant::operands(). Just use foreach loops where possible. llvm-svn: 240694
* Revert r240137 (Fixed/added namespace ending comments using clang-tidy. NFC)Alexander Kornienko2015-06-231-1/+1
| | | | | | Apparently, the style needs to be agreed upon first. llvm-svn: 240390
* Fixed/added namespace ending comments using clang-tidy. NFCAlexander Kornienko2015-06-191-1/+1
| | | | | | | | | | | | | The patch is generated using this command: tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \ -checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \ llvm/lib/ Thanks to Eugene Kosov for the original patch! llvm-svn: 240137
* IR: Give 'DI' prefix to debug info metadataDuncan P. N. Exon Smith2015-04-291-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Finish off PR23080 by renaming the debug info IR constructs from `MD*` to `DI*`. The last of the `DIDescriptor` classes were deleted in r235356, and the last of the related typedefs removed in r235413, so this has all baked for about a week. Note: If you have out-of-tree code (like a frontend), I recommend that you get everything compiling and tests passing with the *previous* commit before updating to this one. It'll be easier to keep track of what code is using the `DIDescriptor` hierarchy and what you've already updated, and I think you're extremely unlikely to insert bugs. YMMV of course. Back to *this* commit: I did this using the rename-md-di-nodes.sh upgrade script I've attached to PR23080 (both code and testcases) and filtered through clang-format-diff.py. I edited the tests for test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns were off-by-three. It should work on your out-of-tree testcases (and code, if you've followed the advice in the previous paragraph). Some of the tests are in badly named files now (e.g., test/Assembler/invalid-mdcompositetype-missing-tag.ll should be 'dicompositetype'); I'll come back and move the files in a follow-up commit. llvm-svn: 236120
* DebugInfo: Drop rest of DIDescriptor subclassesDuncan P. N. Exon Smith2015-04-211-4/+1
| | | | | | | Delete the remaining subclasses of (the already deleted) `DIDescriptor`. Part of PR23080. llvm-svn: 235404
* DebugInfo: Delete subclasses of DIScopeDuncan P. N. Exon Smith2015-04-201-4/+1
| | | | | | | Delete subclasses of (the already defunct) `DIScope`, updating users to use the raw pointers from the `Metadata` hierarchy directly. llvm-svn: 235356
* DebugInfo: Gut DICompileUnit and DIFileDuncan P. N. Exon Smith2015-04-151-3/+3
| | | | | | | Continuing gutting `DIDescriptor` subclasses; this edition, `DICompileUnit` and `DIFile`. In the name of PR23080. llvm-svn: 235055
* DebugInfo: Update signature of DICompileUnit::replace*()Duncan P. N. Exon Smith2015-04-141-1/+1
| | | | | | | | Change `DICompileUnit::replaceSubprograms()` and `DICompileUnit::replaceGlobalVariables()` to match the `MDCompileUnit` equivalents that they're wrapping. llvm-svn: 234852
* DebugInfo: Gut DISubprogram and DILexicalBlock*Duncan P. N. Exon Smith2015-04-141-1/+1
| | | | | | | Gut the `DIDescriptor` wrappers around `MDLocalScope` subclasses. Note that `DILexicalBlock` wraps `MDLexicalBlockBase`, not `MDLexicalBlock`. llvm-svn: 234850
* DebugInfo: Gut DIVariable and DIGlobalVariableDuncan P. N. Exon Smith2015-04-141-2/+2
| | | | | | | | | | Gut all the non-pointer API from the variable wrappers, except an implicit conversion from `DIGlobalVariable` to `DIDescriptor`. Note that if you're updating out-of-tree code, `DIVariable` wraps `MDLocalVariable` (`MDVariable` is a common base class shared with `MDGlobalVariable`). llvm-svn: 234840
* StripSymbols: Use DIGlobalVariable::getConstant() instead of getGlobal()Duncan P. N. Exon Smith2015-04-131-1/+1
| | | | | | | | | | | | | The only difference between the two is a `dyn_cast<>` to `GlobalVariable`. If optimizations have left anything behind when a global gets replaced, then it doesn't seem like the debug info is dead. I can't seem to find an optimization that would leave behind a non-`GlobalVariable` without nulling the reference entirely, so I haven't added a testcase (but I'll be deleting `getGlobal()` in a future commit). llvm-svn: 234792
* Transforms: Stop using DIDescriptor::is*() and auto-castingDuncan P. N. Exon Smith2015-04-061-6/+6
| | | | | | Same as r234255, but for lib/Analysis and lib/Transforms. llvm-svn: 234257
* DebugInfo: Remove DIDescriptor::Verify()Duncan P. N. Exon Smith2015-04-061-4/+0
| | | | | | | | | | | | Remove `DIDescriptor::Verify()` and the `Verify()`s from subclasses. They had already been gutted, and just did an `isa<>` check. In a couple of cases I've temporarily dropped the check entirely, but subsequent commits are going to disallow conversions to the `DIDescriptor`s directly from `MDNode`, so the checks will come back in another form soon enough. llvm-svn: 234201
* IR: Split Metadata from ValueDuncan P. N. Exon Smith2014-12-091-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
* Revert "Revert "DI: Fold constant arguments into a single MDString""Duncan P. N. Exon Smith2014-10-031-18/+2
| | | | | | | | | | | | | | | | | | | | | | This reverts commit r218918, effectively reapplying r218914 after fixing an Ocaml bindings test and an Asan crash. The root cause of the latter was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a PR to investigate who requires the loose check (and why). Original commit message follows. -- This patch addresses the first stage of PR17891 by folding constant arguments together into a single MDString. Integers are stringified and a `\0` character is used as a separator. Part of PR17891. Note: I've attached my testcases upgrade scripts to the PR. If I've just broken your out-of-tree testcases, they might help. llvm-svn: 219010
* Revert "DI: Fold constant arguments into a single MDString"Duncan P. N. Exon Smith2014-10-021-7/+10
| | | | | | This reverts commit r218914 while I investigate some bots. llvm-svn: 218918
* DI: Fold constant arguments into a single MDStringDuncan P. N. Exon Smith2014-10-021-10/+7
| | | | | | | | | | | | | This patch addresses the first stage of PR17891 by folding constant arguments together into a single MDString. Integers are stringified and a `\0` character is used as a separator. Part of PR17891. Note: I've attached my testcases upgrade scripts to the PR. If I've just broken your out-of-tree testcases, they might help. llvm-svn: 218914
* Use range based for loops to avoid needing to re-mention SmallPtrSet size.Craig Topper2014-08-241-3/+2
| | | | llvm-svn: 216351
* Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid ↵Craig Topper2014-08-211-1/+1
| | | | | | needing to mention the size. llvm-svn: 216158
* Revert "Repace SmallPtrSet with SmallPtrSetImpl in function arguments to ↵Craig Topper2014-08-181-1/+1
| | | | | | | | avoid needing to mention the size." Getting a weird buildbot failure that I need to investigate. llvm-svn: 215870
* Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid ↵Craig Topper2014-08-171-1/+1
| | | | | | needing to mention the size. llvm-svn: 215868
* [C++] Use 'nullptr'. Transforms edition.Craig Topper2014-04-251-1/+1
| | | | llvm-svn: 207196
* [C++11] Change DebugInfoFinder to use range-based loopsAlon Mishne2014-03-181-4/+1
| | | | | | Also changes the iterators to return actual DI type over MDNode. llvm-svn: 204130
* [C++11] Add range based accessors for the Use-Def chain of a Value.Chandler Carruth2014-03-091-4/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
* [Layering] Move DebugInfo.h into the IR library where its implementationChandler Carruth2014-03-061-1/+1
| | | | | | already lives. llvm-svn: 203046
* [C++11] Add 'override' keyword to virtual methods that override their base ↵Craig Topper2014-03-051-8/+8
| | | | | | class. llvm-svn: 202953
* Correct word hyphenationsAlp Toker2013-12-051-1/+1
| | | | | | | This patch tries to avoid unrelated changes other than fixing a few hyphen-related ambiguities and contractions in nearby lines. llvm-svn: 196471
* Debug Info: move StripDebugInfo from StripSymbols.cpp to DebugInfo.cpp.Manman Ren2013-11-221-51/+0
| | | | | | | | | | We can share the implementation between StripSymbols and dropping debug info for metadata versions that do not match. Also update the comments to match the implementation. A follow-on patch will drop the "Debug Info Version" module flag in StripDebugInfo. llvm-svn: 195505
* Fixed typo.Michael Gottesman2013-08-271-1/+1
| | | | | | Noticed by Stephen Checkoway <s@pahtak.org>. llvm-svn: 189312
* Update StripDeadDebugInfo to use DebugInfoFinder so that it is no longer ↵Michael Gottesman2013-08-231-62/+93
| | | | | | | | | | | | | | | | | | | | | stale to the point of not working and more resilient to debug info changes. The current version of StripDeadDebugInfo became stale and no longer actually worked since it was expecting an older version of debug info. This patch updates it to use DebugInfoFinder and the modern DebugInfo classes as much as possible to make it more redundent to such changes. Additionally, the only place where that was avoided (the code where we replace the old sets with the new), I call verify on the DIContextUnit implying that if the format changes and my live set changes no longer make sense an assert will be hit. In order to ensure that that occurs I have included a test case. The actual stripping of the dead debug info follows the same strategy as was used before in this class: find the live set and replace the old set in the given compile unit (which may contain dead global variables/functions) with the new live one. llvm-svn: 189078
OpenPOWER on IntegriCloud