| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
| |
Select 32 and 64 bit float constants for MIPS32.
Differential Revision: https://reviews.llvm.org/D59933
llvm-svn: 357183
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is probably the least important of our movmsk problems, but I'm starting
at the bottom to reduce distractions.
We were creating a select_cc which bypasses the select and bitmask codegen
optimizations that we have now. If we produce a compare+negate instead, we
allow things like neg/sbb carry bit hacks, and in all cases we avoid a cmov.
There's no partial register update danger in these sequences because we always
produce the zero-register xor ahead of the 'set' if needed.
There seems to be a missing fold for sext of a bool bit here:
negl %ecx
movslq %ecx, %rax
...but that's an independent transform.
Differential Revision: https://reviews.llvm.org/D59818
llvm-svn: 357172
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This adds a BranchFusion feature to replace the usage of the MacroFusion
for AMD CPUs.
See D59688 for context.
Reviewers: andreadb, lebedev.ri
Subscribers: hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59872
llvm-svn: 357171
|
|
|
|
|
|
|
| |
Also improve the check for SALU instructions to also ignore
implicit_def and other fake instructions.
llvm-svn: 357170
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Based on llvm-exegesis measurements.
Now that llvm-exegesis is ~2 magnitudes faster, and is a bit smarter,
it is now possible to continue cleanup of the scheduler model.
With this, there are no more latency inconsistencies for the
opcodes that produce stable measurements, and only a few inconsistencies
for unstable measurements (MMX_* opcodes, opcodes that llvm-exegesis
measures by chaining - CMP, TEST, BT, SETcc, CVT, MOV, etc.)
llvm-svn: 357169
|
|
|
|
|
|
| |
To avoid more spurious clang-format changes when adding features (D59872).
llvm-svn: 357168
|
|
|
|
|
|
|
|
| |
Now that D59484 has landed its easier to add these.
Added missing AVX512BW v32i16 equivalents while I was at it.
llvm-svn: 357155
|
|
|
|
|
|
|
| |
G_STORE for 1-bit values uses a STRBi12, which stores the whole byte.
Zero out the undefined bits before writing.
llvm-svn: 357154
|
|
|
|
|
|
|
|
|
|
|
| |
G_SELECT uses a 1-bit scalar for the condition, and is currently
implemented with a plain CMPri against 0. This means that values such as
0x1110 are interpreted as true, when instead the higher bits should be
treated as undefined and therefore ignored. Replace the CMPri with a
TSTri against 0x1, which performs an implicit AND, yielding the expected
result.
llvm-svn: 357153
|
|
|
|
|
|
|
|
|
|
|
| |
These fixup kinds are not explicitly related to the code section. They
are there to signal how to apply the fixup.
Also, a couple of other minor wasm cleanups.
Differential Revision: https://reviews.llvm.org/D59908
llvm-svn: 357145
|
|
|
|
|
|
|
|
|
| |
The last reference to this function was removed from the ARM
td files in 2015 in rL225266.
Differential Revision: https://reviews.llvm.org/D59868
llvm-svn: 357130
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If we know the 2 halves of an oversized zext-in-reg are the same,
don't create those halves independently.
I tried several different approaches to fold this, but it's difficult
to get right during legalization. In the default path, we are creating
a generic shuffle that looks like an unpack high, but it can get
transformed into a different mask (a blend), so it's not
straightforward to match that. If we try to fold after it actually
becomes an X86ISD::UNPCKH node, we can't be sure what the operand node
is - it might be a generic shuffle, or it could be some x86-specific op.
From the test output, we should be doing something like this for SSE4.1
as well, but I'd rather leave that as a follow-up since it involves
changing lowering actions.
Differential Revision: https://reviews.llvm.org/D59777
llvm-svn: 357129
|
|
|
|
|
|
|
|
|
| |
This is not exactly NFC because it should make further combines
of MOVMSK easier to match, but there should be no outward differences
because we have isel patterns in place specifically to allow this. See:
// Also support integer VTs to avoid a int->fp bitcast in the DAG.
llvm-svn: 357128
|
|
|
|
|
|
|
|
| |
PreprocessISelDAG to runOnMachineFunction. NFCI
This makes more sense as a place to initialize these. I don't think runOnMachineFunction was overriden when these cached values were originally created.
llvm-svn: 357123
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When lowering a load or store for TypeWidenVector, the type legalizer
would use a single load or store if the associated integer type was legal
or promoted. E.g. it loads a v4i8 as an i32 if i32 is legal/promotable.
(See https://reviews.llvm.org/rL236528 for reference.)
This applies that behaviour to vector types. If the vector type is
TypePromoteInteger, the element type is going to be TypePromoteInteger
as well, which will lead to have a single promoting load rather than N
individual promoting loads. For instance, if we have a v3i1, we would
now have a load of v4i1 instead of 3 loads of i1.
Patch by Guillaume Marques. Thanks!
Differential Revision: https://reviews.llvm.org/D56201
llvm-svn: 357120
|
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D59855
modified: llvm/lib/Target/WebAssembly/WebAssemblyFixIrreducibleControlFlow.cpp
llvm-svn: 357117
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ARMBaseInstrInfo::getNumLDMAddresses is making bad assumptions about the
memory operands of load and store-multiple operations. This doesn't
really fix the problem properly, but it's enough to prevent crashing,
at least.
Fixes https://bugs.llvm.org/show_bug.cgi?id=41231 .
Differential Revision: https://reviews.llvm.org/D59834
llvm-svn: 357109
|
|
|
|
| |
llvm-svn: 357108
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reapplies r356149, using the correct overload of findUnusedReg
which passes the current iterator.
This worked most of the time, because the scavenger iterator was moved
at the end of the frame index loop in PEI. This would fail if the
spill was the first instruction. This was further hidden by the fact
that the scavenger wasn't passed in for normal frame index
elimination.
llvm-svn: 357098
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Haswell CPUs have special support for SHLD/SHRD with the same register for both sources. Such an instruction will go to the rotate/shift unit on port 0 or 6. This gives it 1 cycle latency and 0.5 cycle reciprocal throughput. When the register is not the same, it becomes a 3 cycle operation on port 1. Sandybridge and Ivybridge always have 1 cyc latency and 0.5 cycle reciprocal throughput for any SHLD.
When FastSHLDRotate feature flag is set, we try to use SHLD for rotate by immediate unless BMI2 is enabled. But MachineCopyPropagation can look through a copy and change one of the sources to be different. This will break the hardware optimization.
This patch adds psuedo instruction to hide the second source input until after register allocation and MachineCopyPropagation. I'm not sure if this is the best way to do this or if there's some other way we can make this work.
Fixes PR41055
Differential Revision: https://reviews.llvm.org/D59391
llvm-svn: 357096
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes an assembler bug that allowed SVE vector registers to contain a
type suffix when not expected. The SVE unpredicated movprfx instruction is the
only instruction affected.
The following are examples of what was previously valid:
movprfx z0.b, z0.b
movprfx z0.b, z0.s
movprfx z0, z0.s
These instructions are now erroneous.
Patch by Cullen Rhodes (c-rhodes)
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D59636
llvm-svn: 357094
|
|
|
|
|
|
|
| |
Another test is needed for the case where the scavenge fail, but
there's another issue with that which needs an additional fix.
llvm-svn: 357093
|
|
|
|
|
|
|
|
|
|
| |
Also includes one example of how this transform is unsound. This isn't
verifying the copies are used in the control flow intrinisic patterns.
Also add option to disable exec mask opt pass. Since this pass is
unsound, it may be useful to turn it off until it is fixed.
llvm-svn: 357091
|
|
|
|
|
|
|
| |
Based on how these are inserted, I doubt this was causing a problem in
practice.
llvm-svn: 357090
|
|
|
|
|
|
|
| |
Introduce new helper class to copy properties directly from the base
instruction.
llvm-svn: 357089
|
|
|
|
|
|
|
| |
This shouldn't change anything since the no-ret atomics are selected
later.
llvm-svn: 357084
|
|
|
|
|
|
|
| |
This is not a control flow instruction, so should not be marked as
isBarrier. This fixes a verifier error if followed by unreachable.
llvm-svn: 357081
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The .BTF.ext FuncInfoTable and LineInfoTable contain
information organized per ELF section. Current definition
of FuncInfoTable/LineInfoTable is:
std::unordered_map<uint32_t, std::vector<BTFFuncInfo>> FuncInfoTable
std::unordered_map<uint32_t, std::vector<BTFLineInfo>> LineInfoTable
where the key is the section name off in the string table.
The unordered_map may cause the order of section output
different for different platforms.
The same for unordered map definition of
std::unordered_map<std::string, std::unique_ptr<BTFKindDataSec>>
DataSecEntries
where BTF_KIND_DATASEC entries may have different ordering
for different platforms.
This patch fixed the issue by using std::map.
Test static-var-derived-type.ll is modified to generate two
DataSec's which will ensure the ordering is the same for all
supported platforms.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 357077
|
|
|
|
|
|
| |
The offset operand index is different for atomics.
llvm-svn: 357073
|
|
|
|
|
|
|
| |
return MUBUF opcodes
Reason: the change was mistakenly committed before review
llvm-svn: 357066
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Cleanup isAArch64FrameOffsetLegal by:
- Merging the large switch statement to reuse AArch64InstrInfo::getMemOpInfo().
- Using AArch64InstrInfo::getUnscaledLdSt() to determine whether an instruction
has an unscaled variant.
- Simplifying the logic that calculates the offset to fit the immediate.
Reviewers: paquette, evandro, eli.friedman, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D59636
llvm-svn: 357064
|
|
|
|
|
|
|
|
|
|
| |
See bug 40917: https://bugs.llvm.org/show_bug.cgi?id=40917
Reviewers: artem.tamazov, arsenm
Differential Revision: https://reviews.llvm.org/D59305
llvm-svn: 357063
|
|
|
|
|
|
|
| |
This patch also adds cases PRFUMi and PRFMui.
This change was discussed in https://reviews.llvm.org/D59635.
llvm-svn: 357059
|
|
|
|
|
|
|
|
|
|
|
|
| |
ZERO_EXTEND_VECTOR_INREG (PR40685)
Enable SSE41 ZERO_EXTEND_VECTOR_INREG shuffle combines - for the PMOVZX(PSHUFD(V)) -> UNPCKH(V,0) pattern we reduce the shuffles (port5-bottleneck on Intel) at the expense of creating a zero (pxor v,v) and an extra register move - which is a good trade off as these are pretty cheap and in most cases it doesn't increase register pressure.
This also exposed a missed opportunity to use combine to ZERO_EXTEND_VECTOR_INREG with folded loads - even if we're in the float domain.
........
Causes PR41249
llvm-svn: 357057
|
|
|
|
|
|
|
|
|
|
| |
C1, go through the isel table instead of manually selecting.
Previously we manually selected the AND/OR/XOR with immediate and the SHL(or ADD if the shift is 1). But this was missing out on the opportunity to use a 64 bit AND with a 32-bit immediate and possibly other isel tricks we have built into the tables.
Instead, insert the new nodes into the DAG using insertDAGNode and allow them each to be selected through the normal table.
llvm-svn: 357049
|
|
|
|
|
|
|
|
|
|
| |
This patch lays the groundwork for extending the generic machine scheduler by providing a PPC-specific implementation.
There are no functional changes as this is an incremental patch that simply provides the necessary overrides which just
encapsulate the behavior of the generic scheduler. Subsequent patches will add specific behavior.
Differential Revision: https://reviews.llvm.org/D59284
llvm-svn: 357047
|
|
|
|
|
|
|
| |
We were manually outputting the code we would get from selecting ANY_EXTEND. We
can save some code by just letting an ANY_EXTEND go through isel on its own.
llvm-svn: 357045
|
|
|
|
|
|
|
|
|
|
| |
This patch splits the huge function PPCBranchSelector.cpp:runOnMachineFunction into several smaller functions.
No functional change.
Differential Revision: https://reviews.llvm.org/D59623
llvm-svn: 357033
|
|
|
|
|
|
|
|
|
|
| |
The UseVSXReg flag can be safely removed and the code cleaned up.
Patch By: Yi-Hong Liu
Differential Revision: https://reviews.llvm.org/D58685
llvm-svn: 357028
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change implements lowering of references global symbols in PIC
mode.
This change implements lowering of global references in PIC mode using a
new @GOT reference type. @GOT references can be used with function or
data symbol names combined with the get_global instruction. In this case
the linker will insert the wasm global that stores the address of the
symbol (either in memory for data symbols or in the wasm table for
function symbols).
For now I'm continuing to use the R_WASM_GLOBAL_INDEX_LEB relocation
type for this type of reference which means that this relocation type
can refer to either a global or a function or data symbol. We could
choose to introduce specific relocation types for GOT entries in the
future. See the current dynamic linking proposal:
https://github.com/WebAssembly/tool-conventions/blob/master/DynamicLinking.md
Differential Revision: https://reviews.llvm.org/D54647
llvm-svn: 357022
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
`WebAssembly::analyzeBranch` now does not analyze anything if the
function is CFG stackified. We were previously doing similar things by
checking if a branch's operand is whether an integer or an MBB, but this
failed to bail out when a BB did not have any terminators.
Consider this case:
```
bb0:
try $label0
call @foo // unwinds to %ehpad
bb1:
...
br $label0 // jumps to %cont. can be deleted
ehpad:
catch
...
cont:
end_try
```
Here `br $label0` will be deleted in CFGStackify's
`removeUnnecessaryInstrs` function, because we jump to the %cont block
even without the branch. But in this case, MachineVerifier fails to
verify this, because `ehpad` is not a successor of `bb1` even if `bb1`
does not have any terminators. MachineVerifier incorrectly thinks `bb1`
falls through to the next block.
This pass now consistently rejects all analysis after CFGStackify
whether a BB has terminators or not, also making the MachineVerifier
work. (MachineVerifier does not try to verify relationships between BBs
if `analyzeBranch` fails, the behavior we want after CFGStackify.)
This also adds a new option `-wasm-disable-ehpad-sort` for testing. This
option helps create the sorted order we want to test, and without the
fix in this patch, the tests in cfg-stackify-eh.ll fail at
MachineVerifier with `-wasm-disable-ehpad-sort`.
Reviewers: dschuff
Subscribers: sunfish, sbc100, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59740
llvm-svn: 357015
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This adds `CFGStackified` field and its serialization to
WebAssemblyFunctionInfo.
Reviewers: dschuff
Subscribers: sunfish, sbc100, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59747
llvm-svn: 357011
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The framework for supporting target-specific MachineFunctionInfo was
added in r356215. This adds serialization support for
WebAssemblyFunctionInfo on top of that. This patch only adds the
framework and does not actually serialize anything at this point; we
have to add YAML mapping later for the fields in WebAssemblyFunctionInfo
we want to serialize if necessary.
Reviewers: dschuff, arsenm
Subscribers: sunfish, wdng, sbc100, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59737
llvm-svn: 357009
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When TRY and LOOP markers are in the same BB and END_TRY and END_LOOP
markers are in the same BB, END_TRY should be _before_ END_LOOP, because
LOOP is always before TRY if they are in the same BB. (TRY is placed in
the latest possible position, whereas LOOP is in the earliest possible
position.)
Reviewers: dschuff
Subscribers: sunfish, sbc100, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59751
llvm-svn: 357008
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Before we placed all TRY/END_TRY markers before placing BLOCK/END_BLOCK
markers. This couldn't handle this case:
```
bb0:
br bb2
bb1: // nearest common dominator of bb3 and bb4
br_if ... bb3
br bb4
bb2:
...
bb3:
call @foo // unwinds to ehpad
bb4:
call @bar // unwinds to ehpad
ehpad:
catch
...
```
When we placed TRY markers, we placed it in bb1 because it is the
nearest common dominator of bb3 and bb4. But because bb0 jumps to bb2,
when we placed block markers, we ended up with interleaved scopes like
```
block
try
end_block
catch
end_try
```
which was not correct.
This patch fixes the bug by placing BLOCK and TRY markers in one pass
while iterating BBs in a function. This also adds some more routines to
`placeTryMarkers`, because we now have to assume that there can be
previously placed BLOCK and END_BLOCK.
Reviewers: dschuff
Subscribers: sunfish, sbc100, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59739
llvm-svn: 357007
|
|
|
|
|
|
|
| |
This instruction is unused and not needed.
Review: Ulrich Weigand.
llvm-svn: 356997
|
|
|
|
|
|
|
|
|
| |
Adds two patterns to improve the codegen of GPR value comparisons with small
constants. Instead of first loading the constant into another register and then
doing an XOR of those registers, these patterns directly use the constant as an
XORI immediate.
llvm-svn: 356990
|
|
|
|
|
|
| |
Differential revision: https://reviews.llvm.org/D59760
llvm-svn: 356984
|
|
|
|
|
|
|
|
|
|
| |
in the DAG for the topological sort.
We were using OrigNBits, but that put all the nodes before the node we used to start the control computation. This caused some node earlier than the sequence we inserted to be selected before the sequence we created. We want our new sequence to be selected first since it depends on OrigNBits.
I don't have a test case. Found by reviewing the code.
llvm-svn: 356979
|
|
|
|
|
|
|
|
| |
the BEXTR at Node's position in the DAG for the topological sort.
We were using OrigNBits, but that doesn't guarantee that it will be selected before the nodes that make up X.
llvm-svn: 356978
|