| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is an alternate approach to D57970.
Currently funclets reuse the same stack slots that are used in the
parent function for saving callee-saved xmm registers. If the parent
function modifies a callee-saved xmm register before an excpetion is
thrown, the catch handler will overwrite the original saved value.
This patch allocates space in funclets stack for saving callee-saved xmm
registers and uses RSP instead RBP to access memory.
Reviewers: andrew.w.kaylor, LuoYuanke, annita.zhang, craig.topper,
RKSimon
Subscribers: rnk, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63396
Signed-off-by: pengfei <pengfei.wang@intel.com>
llvm-svn: 367088
|
|
|
|
|
|
| |
All these args can be cheaply recomputed and it makes it much easier to use the function as a quick helper.
llvm-svn: 367014
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Add a new method which tries to compute the target address referenced by an operand.
This patch supports x86_64 RIP-relative addressing for now.
It is necessary to print referenced symbol names in llvm-objdump.
Reviewers: andreadb, MaskRay, grosbach, jgalenson, craig.topper
Reviewed By: MaskRay, craig.topper
Subscribers: bcain, rupprecht, jhenderson, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63847
llvm-svn: 366987
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This was originally reported in D62818.
https://rise4fun.com/Alive/oPH
InstCombine does the opposite fold, in hope that `C l>>/<< Y` expression
will be hoisted out of a loop if `Y` is invariant and `X` is not.
But as it is seen from the diffs here, if it didn't get hoisted,
the produced assembly is almost universally worse.
Much like with my recent "hoist add/sub by/from const" patches,
we should get almost universal win if we hoist constant,
there is almost always an "and/test by imm" instruction,
but "shift of imm" not so much, so we may avoid having to
materialize the immediate, and thus need one less register.
And since we now shift not by constant, but by something else,
the live-range of that something else may reduce.
Special care needs to be applied not to disturb x86 `BT` / hexagon `tstbit`
instruction pattern. And to not get into endless combine loop.
Reviewers: RKSimon, efriedma, t.p.northover, craig.topper, spatel, arsenm
Reviewed By: spatel
Subscribers: hiraditya, MaskRay, wuzish, xbolva00, nikic, nemanjai, jvesely, wdng, nhaehnle, javed.absar, tpr, kristof.beyls, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62871
llvm-svn: 366955
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for recognizing cases where a larger vector type is being used to reduce just the elements in the lower subvector:
e.g. <8 x i32> reduction pattern in a <16 x i32> vector:
<4,5,6,7,u,u,u,u,u,u,u,u,u,u,u,u>
<2,3,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
<1,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
matchBinOpReduction returns the lower extracted subvector in such cases, assuming isExtractSubvectorCheap accepts the extraction.
I've only enabled it for X86 reduction sums so far. I intend to enable it for the bitop/minmax cases in future patches, and eventually I think its worth turning it on all the time. This is mainly just a case of ensuring calls to matchBinOpReduction don't make assumptions on the vector width based on the original vector extraction.
Fixes the x86 partial reduction sum cases in PR33758 and PR42023.
Differential Revision: https://reviews.llvm.org/D65047
llvm-svn: 366933
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
the shuffle mask by commuting, just commute the mask and swap V1/V2.
LegalizeDAG tries to legal the DAG by legalizing nodes before
their operands.
If we create a new node, we end up legalizing it after its operands.
This prevents some of the optimizations that can be done when the
operand is a build_vector since the build_vector will have been
legalized to something else.
Differential Revision: https://reviews.llvm.org/D65132
llvm-svn: 366835
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
directly in v16i8 with the correct 0x00 or 0xFF elements rather than using another VT and bitcasting it.
The build_vector will become a constant pool load. By using the
desired type initially, it ensures we don't generate a bitcast
of the constant pool load which will need to be folded with
the load.
While experimenting with another patch, I noticed that when the
load type and the constant pool type don't match, then
SimplifyDemandedBits can't handle it. While we should probably
fix that, this was a simple way to fix the issue I saw.
llvm-svn: 366732
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch enables us to find the source loads for each element, splitting them into a Load and ByteOffset, and attempts to recognise consecutive loads that are in fact from the same source load.
A helper function, findEltLoadSrc, recurses to find a LoadSDNode and determines the element's byte offset within it. When attempting to match consecutive loads, byte offsetted loads then attempt to matched against a previous load that has already been confirmed to be a consecutive match.
Next step towards PR16739 - after this we just need to account for shuffling/repeated elements to create a vector load + shuffle.
Fixed out of bounds load assert identified in rL366501
Differential Revision: https://reviews.llvm.org/D64551
llvm-svn: 366681
|
|
|
|
|
|
|
|
|
|
|
|
| |
Modified the following 3 intrinsics:
int_addressofreturnaddress,
int_frameaddress & int_sponentry.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D64561
llvm-svn: 366679
|
|
|
|
|
|
|
|
| |
narrowing handling. NFCI.
Move the narrowing of SUBV_BROADCAST to where we handle all the other opcodes.
llvm-svn: 366660
|
|
|
|
|
|
| |
As detailed on PR42674, we can reduce a vXi8 down until we have the final <8 x i8>, and then use PSADBW with zero, to sum those values. We then extract the bottom i8, discarding any overflow from the upper bits of the i16 result.
llvm-svn: 366636
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
For split-stack, if the nested argument (i.e. R10) is not used, no need to save/restore it in the prologue.
Reviewers: thanm
Reviewed By: thanm
Subscribers: mstorsjo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64673
llvm-svn: 366569
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
and legalize later.
I plan on adding memcpy optimizations in the GlobalISel pipeline, but we can't
do that unless we delay lowering to actual function calls. This patch changes
the translator to generate G_INTRINSIC_W_SIDE_EFFECTS for these functions, and
then have each target specify that using the new custom legalizer for intrinsics
hook that they want it expanded it a libcall.
Differential Revision: https://reviews.llvm.org/D64895
llvm-svn: 366516
|
|
|
|
|
|
|
|
| |
This reverts r366441 (git commit 48104ef7c9c653bbb732b66d7254957389fea337)
This causes clang to fail to compile some file in Skia. Reduction soon.
llvm-svn: 366501
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch enables us to find the source loads for each element, splitting them into a Load and ByteOffset, and attempts to recognise consecutive loads that are in fact from the same source load.
A helper function, findEltLoadSrc, recurses to find a LoadSDNode and determines the element's byte offset within it. When attempting to match consecutive loads, byte offsetted loads then attempt to matched against a previous load that has already been confirmed to be a consecutive match.
Next step towards PR16739 - after this we just need to account for shuffling/repeated elements to create a vector load + shuffle.
Differential Revision: https://reviews.llvm.org/D64551
llvm-svn: 366441
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
LEA doesn't affect flags, so use it more liberally to replace an ADD when
we know that the ADD operands affect flags.
In the motivating example from PR40483:
https://bugs.llvm.org/show_bug.cgi?id=40483
...this lets us avoid duplicating a math op just to avoid flag conflict.
As mentioned in the TODO comments, this heuristic can be extended to
fire more often if that leads to more improvements.
Differential Revision: https://reviews.llvm.org/D64707
llvm-svn: 366431
|
|
|
|
|
|
|
|
|
|
|
| |
I'm not convinced the code this calls is properly vetted for
vXi1 vectors. Experimental vector widening legalization testing
for D55251 is now hitting an assertion failure inside
EltsFromConsecutiveLoads. This is occurring from a v2i1 load
having a store size different than its VT size. Hopefully
this commit will keep such issues from happening.
llvm-svn: 366405
|
|
|
|
|
|
|
|
|
| |
min-legal-vector-width=256 is in effect.
This started triggering an assertion after r364718 when we made
these Custom under AVX2.
llvm-svn: 366382
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is part of what is requested by PR42023:
https://bugs.llvm.org/show_bug.cgi?id=42023
There's an extension needed for FP add, but exactly how we would specify
that using flags is not clear to me, so I left that as a TODO.
We're still missing patterns for partial reductions when the input vector
is 256-bit or 512-bit, but I think that's a failure of vector narrowing.
If we can reduce the widths, then this matching should work on those tests.
Differential Revision: https://reviews.llvm.org/D64760
llvm-svn: 366268
|
|
|
|
|
|
|
| |
Type legalization can take care of this. This gives DAG combine
a little more time with the original types.
llvm-svn: 366182
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch applies clang-tidy's bugprone-argument-comment tool
to LLVM, clang and lld source trees. Here is how I created this
patch:
$ git clone https://github.com/llvm/llvm-project.git
$ cd llvm-project
$ mkdir build
$ cd build
$ cmake -GNinja -DCMAKE_BUILD_TYPE=Debug \
-DLLVM_ENABLE_PROJECTS='clang;lld;clang-tools-extra' \
-DCMAKE_EXPORT_COMPILE_COMMANDS=On -DLLVM_ENABLE_LLD=On \
-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ../llvm
$ ninja
$ parallel clang-tidy -checks='-*,bugprone-argument-comment' \
-config='{CheckOptions: [{key: StrictMode, value: 1}]}' -fix \
::: ../llvm/lib/**/*.{cpp,h} ../clang/lib/**/*.{cpp,h} ../lld/**/*.{cpp,h}
llvm-svn: 366177
|
|
|
|
|
|
|
|
|
|
|
|
| |
We mostly avoid sub with immediate but there are a couple cases that can create them. One is the add 128, %rax -> sub -128, %rax trick in isel. The other is when a SUB immediate gets created for a compare where both the flags and the subtract value is used. If we are unable to linearize the SelectionDAG to satisfy the flag user and the sub result user from the same instruction, we will clone the sub immediate for the two uses. The one that produces flags will eventually become a compare. The other will have its flag output dead, and could then be considered for LEA creation.
I added additional test cases to add.ll to show the the sub -128 trick gets converted to LEA and a case where we don't need to convert it.
This showed up in the current codegen for PR42571.
Differential Revision: https://reviews.llvm.org/D64574
llvm-svn: 366151
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
inttofp (trunc (extelt X, 0)) --> inttofp (extelt (bitcast X), 0)
We have pseudo-vectorization of scalar int to FP casts, so this tries to
make that more likely by replacing a truncate with a bitcast. I didn't see
any test diffs starting from 'uitofp', so I left that as a TODO. We can't
only match the shorter trunc+extract pattern because there's an opposing
transform somewhere, so we infinite loop. Waiting to try this during
lowering is another possibility.
A motivating case is shown in PR39975 and included in the test diffs here:
https://bugs.llvm.org/show_bug.cgi?id=39975
Differential Revision: https://reviews.llvm.org/D64710
llvm-svn: 366098
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
out of range.
I think we only turn out of range shiftss to undef when
all elements are out of range or the shift amount is a splat out
of range. I'm not sure which, I didn't check.
During lowering we can split a shift where some elements
are out of range into multiple shifts. This can create a
new shift with a splat shift amount that is out of range.
This patch returns undef for this case.
Fixes PR42615.
Differential Revision: https://reviews.llvm.org/D64699
llvm-svn: 366096
|
|
|
|
|
|
|
|
| |
formed. NFCI.
While we don't make any assumptions about the actual mask, assert that the expected mask only contains valid mask element values.
llvm-svn: 366066
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
size of the result type. Use them improve the codegen of v2f32 loads/stores with sse1 only.
Summary:
SSE1 only supports v4f32. But does have instructions like movlps/movhps that load/store 64-bits of memory.
This patch breaks the connection between the node VT of the vzext_load/vextract_store patterns and the memory VT. Enabling a v4f32 node with a 64-bit memory VT. I've used i64 as the memory VT here. I've written the PatFrag predicate to just check the store size not the specific VT. I think the VT will only matter for CSE purposes. We could use v2f32, but if we want to start using these operations in more places a simple integer type might make the most sense.
I'd like to maybe use this same thing for SSE2 and later as well, but that will need more work to be supported by EltsFromConsecutiveLoads to avoid regressing lit tests. I'd maybe also like to combine bitcasts with these load/stores nodes now that the types are disconnected. And I'd also like to consider canonicalizing (scalar_to_vector + load) to vzext_load.
If you want I can split the mechanical tablegen stuff where I added the 32/64 off from the sse1 change.
Reviewers: spatel, RKSimon
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64528
llvm-svn: 366034
|
|
|
|
|
|
|
|
|
|
|
| |
added in r365287.
This was copy/pasted from above and I forgot to change it. We just
need the default offset of 0 here.
Fixes PR42616.
llvm-svn: 366011
|
|
|
|
| |
llvm-svn: 365998
|
|
|
|
|
|
| |
optimizeCompareInstr. NFCI
llvm-svn: 365946
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can use the C flag from NEG to detect that the input was zero.
Really we could probably use the Z flag too. But C matches what
we'd do for usubo 0, X.
Haven't found a test case for this due to the usubo formation
in CGP. But I verified if I comment out the CGP code this
transformation catches some of the same cases.
llvm-svn: 365929
|
|
|
|
|
|
|
|
| |
A build failure was found on the SystemZ platform.
This reverts commit 9e7e73578e54cd22b3c7af4b54274d743b6607cc.
llvm-svn: 365886
|
|
|
|
|
|
|
|
|
|
|
| |
Follow up to D58597, where it was noted that the commuted ISD::SUB variant
was having problems with lack of combines.
See also D63958 where we untangled setcc/sub pairs.
Differential Revision: https://reviews.llvm.org/D58875
llvm-svn: 365791
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD
code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
attempted to be relaxed to IE/LE (binutils PR24784). gold and lld are good.
In gcc/config/i386/i386.md, there is a configure-time check of as/ld
support and the GOT relaxation will not be used if as/ld doesn't support
it:
if (flag_plt || !HAVE_AS_IX86_TLS_GET_ADDR_GOT)
return "call\t%P2";
return "call\t{*%p2@GOT(%1)|[DWORD PTR %p2@GOT[%1]]}";
In clang, -DENABLE_X86_RELAX_RELOCATIONS=OFF is the default. The ld.bfd
bogus error can be reproduced with:
thread_local int a;
int main() { return a; }
clang -fno-plt -fpic a.cc -fuse-ld=bfd
GOTPCRELX gained relative good support in 2016, which is considered
relatively new. It is even difficult to conditionally default to
-DENABLE_X86_RELAX_RELOCATIONS=ON due to cross compilation reasons. So
work around the ld.bfd bug by only using GOT when GOTPCRELX is enabled.
Reviewers: dalias, hjl.tools, nikic, rnk
Reviewed By: nikic
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64304
llvm-svn: 365752
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We use the functions that convert to three address to do the
conversion, but changing an 8 or 16 bit will cause it to create
a virtual register. This can't be done after register allocation
where this pass runs.
I've switched the pass completely to a white list of instructions
that can be converted to LEA instead of a blacklist that was
incorrect. This will avoid surprises if we enhance the three
address conversion function to include additional instructions
in the future.
Fixes PR42565.
llvm-svn: 365720
|
|
|
|
|
|
| |
Fixes similar issues to r352306.
llvm-svn: 365705
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unfortunately subo formation in CGP prevents obvious ways of
testing this.
But we already have BLSI in here and the flag behavior is
well understood.
Might become more useful if we improve PR42571.
llvm-svn: 365702
|
|
|
|
| |
llvm-svn: 365697
|
|
|
|
|
|
| |
Determine the element/load size calculations earlier and assert that they are whole bytes in size.
llvm-svn: 365674
|
|
|
|
|
|
| |
We've already checked that each element is the correct contributory size for VT when we inspect the elements for Undef/Zero/Load.
llvm-svn: 365656
|
|
|
|
|
|
|
|
| |
size. NFCI.
This renames the type so it doesn't sound like its based off the load size - as we're moving towards supporting combining loads of different sizes.
llvm-svn: 365655
|
|
|
|
|
|
| |
NFCI.
llvm-svn: 365628
|
|
|
|
|
|
| |
Don't bother checking for LDBase != null - it should be (and we assert that it is).
llvm-svn: 365622
|
|
|
|
|
|
| |
Cache the LoadSDNode nodes so we can easily map to/from the element index instead of packing them together - this will be useful for future patches for PR16739 etc.
llvm-svn: 365620
|
|
|
|
|
|
|
|
|
|
| |
This patch checks to see if the vector element loads are based off a dereferenceable pointer that covers the entire vector width, in which case we don't need to have element loads at both extremes of the vector width - just the start (base pointer) of it.
Another step towards partial vector loads......
Differential Revision: https://reviews.llvm.org/D64205
llvm-svn: 365614
|
|
|
|
|
|
|
|
|
| |
extending loads.
This seems to fix a failure reported by Jordan Rupprecht, but we
don't have a reduced test case yet.
llvm-svn: 365589
|
|
|
|
|
|
|
|
|
|
| |
This should prevent doing this on pre-sse4.1 targets or for 256
bit vectors without avx2.
I don't know of a failure from this. Op legalization will probably
take care of, but seemed better to be safe.
llvm-svn: 365577
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
isLoadBitCastBeneficial/isStoreBitCastBeneficial to allow X86 to bypass it
Basically the problem is that X86 doesn't set the Fast flag from
allowsMemoryAccess on certain CPUs due to slow unaligned memory
subtarget features. This prevents bitcasts from being folded into
loads and stores. But all vector loads and stores of the same width
are the same cost on X86.
This patch merges the allowsMemoryAccess call into isLoadBitCastBeneficial to allow X86 to skip it.
Differential Revision: https://reviews.llvm.org/D64295
llvm-svn: 365549
|
|
|
|
| |
llvm-svn: 365540
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Dump the DWARF information about call sites and call site parameters into
debug info sections.
The patch also provides an interface for the interpretation of instructions
that could load values of a call site parameters in order to generate DWARF
about the call site parameters.
([13/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D60716
llvm-svn: 365467
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This makes it so that IR files using triples without an environment work
out of the box, without normalizing them.
Typically, the MSVC behavior is more desirable. For example, it tends to
enable things like constant merging, use of associative comdats, etc.
Addresses PR42491
Reviewers: compnerd
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64109
llvm-svn: 365387
|