| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Now that there is a one-to-one mapping from MachineFunction to
WinEHFuncInfo, we don't need to use a DenseMap to select the right
WinEHFuncInfo for the current funclet.
The main challenge here is that X86WinEHStatePass is an IR pass that
doesn't have access to the MachineFunction. I gave it its own
WinEHFuncInfo object that it uses to calculate state numbers, which it
then throws away. As long as nobody creates or removes EH pads between
this pass and SDAG construction, we will get the same state numbers.
The other thing X86WinEHStatePass does is to mark the EH registration
node. Instead of communicating which alloca was the registration through
WinEHFuncInfo, I added the llvm.x86.seh.ehregnode intrinsic. This
intrinsic generates no code and simply marks the alloca in use.
Reviewers: JCTremoulet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14668
llvm-svn: 253378
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, if the assembler encounters an error after parsing (such as an
out-of-range fixup), it reports this as a fatal error, and so stops after the
first error. However, for most of these there is an obvious way to recover
after emitting the error, such as emitting the fixup with a value of zero. This
means that we can report on all of the errors in a file, not just the first
one. MCContext::reportError records the fact that an error was encountered, so
we won't actually emit an object file with the incorrect contents.
Differential Revision: http://reviews.llvm.org/D14717
llvm-svn: 253328
|
|
|
|
|
|
| |
Now that we can recognise different vector sizes.
llvm-svn: 253268
|
|
|
|
|
|
| |
Now that we can recognise different vector sizes - will make future AVX512 additions easier.
llvm-svn: 253266
|
|
|
|
|
|
| |
Now that we can recognise different vector sizes - will make future AVX512 additions easier.
llvm-svn: 253260
|
|
|
|
|
|
| |
Now that we can recognise different vector sizes - will make future AVX512 additions easier.
llvm-svn: 253258
|
|
|
|
|
|
|
|
|
|
|
| |
On top of that, don't bother allocating and initializing UnwindHelp if
we don't have any funclets. Currently we always use RBP as our frame
pointer when funclets are present, so this change makes it impossible to
come here without any fixed stack objects.
Fixes PR25533.
llvm-svn: 253245
|
|
|
|
| |
llvm-svn: 253244
|
|
|
|
|
|
|
|
| |
instructions.
Differential Revision: http://reviews.llvm.org/D14322
llvm-svn: 253185
|
|
|
|
| |
llvm-svn: 253171
|
|
|
|
|
|
| |
It broke layering violation. Reproducible with BUILD_SHARED_LIBS=ON.
llvm-svn: 253163
|
|
|
|
|
|
|
|
| |
instructions.
Differential Revision: http://reviews.llvm.org/D14322
llvm-svn: 253160
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
MCRelaxableFragment previously kept a copy of MCSubtargetInfo and
MCInst to enable re-encoding the MCInst later during relaxation. A copy
of MCSubtargetInfo (instead of a reference or pointer) was needed
because the feature bits could be modified by the parser.
This commit replaces the MCSubtargetInfo copy in MCRelaxableFragment
with a constant reference to MCSubtargetInfo. The copies of
MCSubtargetInfo are kept in MCContext, and the target parsers are now
responsible for asking MCContext to provide a copy whenever the feature
bits of MCSubtargetInfo have to be toggled.
With this patch, I saw a 4% reduction in peak memory usage when I
compiled verify-uselistorder.lto.bc using llc.
rdar://problem/21736951
Differential Revision: http://reviews.llvm.org/D14346
llvm-svn: 253127
|
|
|
|
|
|
|
|
|
|
| |
MCSubtargetInfo in the subclasses into MCTargetAsmParser and define a
member function getSTI.
This is done in preparation for making changes to shrink the size of
MCRelaxableFragment. (see http://reviews.llvm.org/D14346).
llvm-svn: 253124
|
|
|
|
|
|
| |
it somewhat more consistent with how the feature is used.
llvm-svn: 253122
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The C++ EH personality automatically restores ESP from the C++ EH
registration node after a catchret. I mistakenly thought it was like
SEH, which does not restore ESP.
It makes sense for C++ EH to differ from SEH here because SEH does not
use funclets for catches, and does not allow catching inside of finally.
C++ EH may need to unwind through multiple catch funclets and eventually
catchret to some outer funclet. Therefore, the runtime has to keep track
of which ESP to use with catchret, rather than having the compiler
reload it manually.
llvm-svn: 253084
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
instruction for sext from v16i8 to v16i16 and v8i16 to v8i32.
This patch is enabling combining UNPCKL with vector_shuffle that moves the upper
half of a vector into the lower half, into a UNPCKH instruction. For example:
t2: v16i8 = vector_shuffle<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> t1, undef:v16i8
t3: v16i8 = X86ISD::UNPCKL undef:v16i8, t2
will be combined to:
t3: v16i8 = X86ISD::UNPCKH undef:v16i8, t1
Differential revision: http://reviews.llvm.org/D14399
llvm-svn: 253067
|
|
|
|
|
|
|
| |
Now the offset of UnwindHelp in our EH tables and the offset that we
store to in the prologue agree.
llvm-svn: 253059
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
|
|
|
|
|
|
|
|
|
|
| |
It made it possible to apply the memory folding optimization for the 2nd
operand of FMA*_Int instructions.
Reviewer: Quentin Colombet
Differential Revision: http://reviews.llvm.org/D14550
llvm-svn: 252973
|
|
|
|
| |
llvm-svn: 252940
|
|
|
|
|
|
|
|
|
|
|
| |
{fadd,fdiv,fmul,fsub,fsubr,fdivr} to {faddp,fdivp,fmulp,fsubp,fsubrp,fdivrp}
LLVM Missing the following instructions: fadd\fdiv\fmul\fsub\fsubr\fdivr.
GAS and MS supporting this instruction and lowering them in to a faddp\fdivp\fmulp\fsubp\fsubrp\fdivrp instructions.
Differential Revision: http://reviews.llvm.org/D14217
llvm-svn: 252908
|
|
|
|
|
|
|
|
|
| |
Calls involved in thread-local variable lookup save more registers
than normal calls.
rdar://problem/23073171
llvm-svn: 252837
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Other personalities don't use this special frame slot.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14580
llvm-svn: 252778
|
|
|
|
|
|
|
|
|
| |
instruction.
Differential Revision: http://reviews.llvm.org/D13316
Fixes PR25003
llvm-svn: 252743
|
|
|
|
|
|
| |
expression"; NFC.
llvm-svn: 252728
|
|
|
|
|
|
|
|
|
| |
If possible and profitable, replace lea %reg, 1(%reg) and lea %reg, -1(%reg) with inc %reg and dec %reg respectively.
Patch by: anton.nadolsky@intel.com
Differential Revision: http://reviews.llvm.org/D14059
llvm-svn: 252722
|
|
|
|
|
|
| |
introduced with SSE or SSE2.
llvm-svn: 252709
|
|
|
|
| |
llvm-svn: 252708
|
|
|
|
|
|
|
| |
Inserting it before the target block could be bad, we might already have
a fallthrough edge to it.
llvm-svn: 252670
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D14495
llvm-svn: 252621
|
|
|
|
|
|
|
|
| |
instructions.
Differential Revision: http://reviews.llvm.org/D14492
llvm-svn: 252592
|
|
|
|
| |
llvm-svn: 252582
|
|
|
|
| |
llvm-svn: 252580
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For CoreCLR on Windows, stack probes must be emitted as inline sequences that probe successive stack pages
between the current stack limit and the desired new stack pointer location. This implements support for
the inline expansion on x64.
For in-body alloca probes, expansion is done during instruction lowering. For prolog probes, a stub call
is initially emitted during prolog creation, and expanded after epilog generation, to avoid complications
that arise when introducing new machine basic blocks during prolog and epilog creation.
Added a new test case, modified an existing one to exclude non-x64 coreclr (for now).
Add test case
Fix tests
llvm-svn: 252578
|
|
|
|
|
|
| |
Fixes machine verification failures with David's latest EH change.
llvm-svn: 252541
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was suggested in:
http://reviews.llvm.org/D13956
and is a follow-on to:
http://reviews.llvm.org/rL252515
http://reviews.llvm.org/rL252519
This lets us remove logically equivalent/duplicated code from DAGCombiner and X86ISelDAGToDAG.
A corresponding function for IR instructions already exists in ValueTracking.
llvm-svn: 252539
|
|
|
|
|
|
|
| |
Instead, emit a CATCHPAD node which will get selected to a target
specific sequence.
llvm-svn: 252528
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The motivation for this patch starts with the epic fail example in PR18007:
https://llvm.org/bugs/show_bug.cgi?id=18007
...unfortunately, this patch makes no difference for that case, but it solves some
simpler cases. We'll get there some day. :)
The current 'or' matching code was using computeKnownBits() via
isBaseWithConstantOffset() -> MaskedValueIsZero(), but that's an unnecessarily limited use.
We can do more by copying the logic in ValueTracking's haveNoCommonBitsSet(), so we can
treat the 'or' as if it was an 'add'.
There's a TODO comment here because we should lift the bit-checking logic into a helper
function, so it's not duplicated in DAGCombiner.
An example of the better LEA matching:
leal (%rdi,%rdi), %eax
andl $1, %esi
orl %esi, %eax
Becomes:
andl $1, %esi
leal (%rsi,%rdi,2), %eax
Differential Revision: http://reviews.llvm.org/D13956
llvm-svn: 252515
|
|
|
|
|
|
|
|
|
|
| |
For some reason we'd never run MachineVerifier on WinEH code, and you
explicitly have to ask for it with llc. I added it to a few test cases
to get some coverage.
Fixes PR25461.
llvm-svn: 252512
|
|
|
|
|
|
|
|
|
|
|
| |
The TailDuplication machine pass ran across a malformed CFG: a PHI node
referred it's predecessor's predecessor instead of it's predecessor.
This occurred because we split the edge in X86ISelLowering when we
processed the CATCHRET but forgot to do something about the PHI nodes.
This fixes PR25444.
llvm-svn: 252413
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
llvm-svn: 252383
|
|
|
|
|
|
|
|
|
|
|
| |
When matching non-LSB-extracting truncating broadcasts, we now insert
the necessary SRL. If the scalar resulted from a load, the SRL will be
folded into it, creating a narrower, offset, load.
However, i16 loads aren't Desirable, so we get i16->i32 zextloads.
We already catch i16 aextloads; catch these as well.
llvm-svn: 252363
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we recognize this, we can support it instead of bailing out.
That is, we can fold:
(v8i16 (shufflevector
(v8i16 (bitcast (v4i32 (build_vector X, Y, ...)))),
<1,1,...,1>))
into:
(v8i16 (vbroadcast (i16 (trunc (srl Y, 16)))))
llvm-svn: 252362
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We used to incorrectly assume that the offset we're extracting from
was a multiple of the element size. So, we'd fold:
(v8i16 (shufflevector
(v8i16 (bitcast (v4i32 (build_vector X, Y, ...)))),
<1,1,...,1>))
into:
(v8i16 (vbroadcast (i16 (trunc Y))))
whereas we should have extracted the higher bits from X.
Instead, bail out if the assumption doesn't hold.
llvm-svn: 252361
|
|
|
|
|
|
|
|
|
|
|
|
| |
All 3 operands of FMA3 instructions are commutable now.
Patch by Slava Klochkov
Reviewers: Quentin Colombet(qcolombet), Ahmed Bougacha(ab).
Differential Revision: http://reviews.llvm.org/D13269
llvm-svn: 252335
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In this implementation, LiveIntervalAnalysis invents a few register
masks on basic block boundaries that preserve no registers. The nice
thing about this is that it prevents the prologue inserter from thinking
it needs to spill all XMM CSRs, because it doesn't see any explicit
physreg defs in the MI.
Reviewers: MatzeB, qcolombet, JosephTremoulet, majnemer
Subscribers: MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D14407
llvm-svn: 252318
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds the EH_RESTORE x86 pseudo instr, which is responsible for
restoring the stack pointers: EBP and ESP, and ESI if stack realignment
is involved. We only need this on 32-bit x86, because on x64 the runtime
restores CSRs for us.
Previously we had to keep the CATCHRET instruction around during SEH so
that we could convince X86FrameLowering to restore our frame pointers.
Now we can split these instructions earlier.
This was confusing, because we had a return instruction which wasn't
really a return and was ultimately going to be removed by
X86FrameLowering. This change also simplifies X86FrameLowering, which
really shouldn't be building new MBBs.
No observable functional change currently, but with the new register
mask stuff in D14407, CATCHRET will become a register allocator barrier,
and our existing tests rely on us having reasonable register allocation
around SEH.
llvm-svn: 252266
|
|
|
|
| |
llvm-svn: 252217
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We already had a test for this for 32-bit SEH catchpads, but those don't
actually create funclets. We had a bug that only appeared in funclet
prologues, where we would establish EBP and ESI as our FP and BP, and
then downstream prologue code would overwrite them.
While I was at it, I fixed Win64+funclets+stackrealign. This issue
doesn't come up as often there due to the ABI requring 16 byte stack
alignment, but now we can rest easy that AVX and WinEH will work well
together =P.
llvm-svn: 252210
|