| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
| |
llvm-svn: 346073
|
| |
|
|
|
|
|
|
|
|
|
| |
Use MachineFrameInfo's OffsetAdjustment field to pass this information
from the target to CodeViewDebug.cpp. The X86 backend doesn't use it for
any other purpose.
This fixes PR38857 in the case where there is a non-aligned quantity of
CSRs and a non-aligned quantity of locals.
llvm-svn: 346062
|
| |
|
|
|
|
|
|
| |
using X86ISD::UNPCKL
The majority of the changes are because the rest of shuffle lowering/combining prefers to replace the undef input with the other operand. Using UNPCKL directly seemed to avoid this and just grabbed a randomish register for the undef which can create false dependencies.
llvm-svn: 346050
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
types are legal with AVX1
We already have custom lowering for the AVX case in LegalizeVectorOps. So its better to keep the regular extend op around as long as possible.
I had to qualify one place in DAG combine that created illegal vector extending load operations. This change by itself had no effect on any tests which is why its included here.
I've made a few cleanups to the custom lowering. The sign extend code no longer creates an identity shuffle with undef elements. The zero extend code now emits a zero_extend_vector_inreg instead of an unpckl with a zero vector.
For the high half of the custom lowering of zero_extend/any_extend, we're now using an unpckh with a zero vector or undef. Previously we used used a pshufd to move the upper 64-bits to the lower 64-bits and then used a zero_extend_vector_inreg. I think the zero vector should require less execution resources and be smaller code size.
Differential Revision: https://reviews.llvm.org/D54024
llvm-svn: 346043
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
|
| |
|
|
|
|
|
|
| |
This patch adds support for expanding vector CTPOP instructions and removes the x86 'bitmath' lowering which replicates the same expansion.
Differential Revision: https://reviews.llvm.org/D53258
llvm-svn: 345869
|
| |
|
|
|
|
|
|
|
|
| |
processInstructionForSlowLEA (NFCI)
The function isn't SLM specific (its driven by the FeatureSlowLEA flag).
Minor tidyup prior to PR38225.
llvm-svn: 345836
|
| |
|
|
|
|
|
|
|
|
| |
resolveTargetShuffleInputs (reapplied)
Reapplying an updated version of rL345395 (reverted in rL345451), now the issues noticed in PR39483 have been fixed.
This patch allows resolveTargetShuffleInputs to remove UNDEF inputs from cases where we have more than 2 inputs.
llvm-svn: 345824
|
| |
|
|
|
|
|
| |
This avoids declaring them twice: in X86TargetMachine.cpp and the file
implementing the pass.
llvm-svn: 345801
|
| |
|
|
|
|
| |
Google is reporting regressions on some benchmarks.
llvm-svn: 345785
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
constraints on instruction operands.
Before this patch, class PredicateExpander only knew how to expand simple
predicates that performed checks on instruction operands.
In particular, the new scheduling predicate syntax was not rich enough to
express checks like this one:
Foo(MI->getOperand(0).getImm()) == ExpectedVal;
Here, the immediate operand value at index zero is passed in input to function
Foo, and ExpectedVal is compared against the value returned by function Foo.
While this predicate pattern doesn't show up in any X86 model, it shows up in
other upstream targets. So, being able to support those predicates is
fundamental if we want to be able to modernize all the scheduling models
upstream.
With this patch, we allow users to specify if a register/immediate operand value
needs to be passed in input to a function as part of the predicate check. Now,
register/immediate operand checks all derive from base class CheckOperandBase.
This patch also changes where TIIPredicate definitions are expanded by the
instructon info emitter. Before, definitions were expanded in class
XXXGenInstrInfo (where XXX is a target name).
With the introduction of this new syntax, we may want to have TIIPredicates
expanded directly in XXXInstrInfo. That is because functions used by the new
operand predicates may only exist in the derived class (i.e. XXXInstrInfo).
This patch is a non functional change for the existing scheduling models.
In future, we will be able to use this richer syntax to better describe complex
scheduling predicates, and expose them to llvm-mca.
Differential Revision: https://reviews.llvm.org/D53880
llvm-svn: 345714
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
optsize using masked wide loads
Under Opt for Size, the vectorizer does not vectorize interleave-groups that
have gaps at the end of the group (such as a loop that reads only the even
elements: a[2*i]) because that implies that we'll require a scalar epilogue
(which is not allowed under Opt for Size). This patch extends the support for
masked-interleave-groups (introduced by D53011 for conditional accesses) to
also cover the case of gaps in a group of loads; Targets that enable the
masked-interleave-group feature don't have to invalidate interleave-groups of
loads with gaps; they could now use masked wide-loads and shuffles (if that's
what the cost model selects).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53668
llvm-svn: 345705
|
| |
|
|
|
|
|
|
|
|
|
|
| |
work correctly if we already walked through a bitcast that changed the element size.
The CONCAT_VECTORS case was using the original mask element count to determine how to adjust the broadcast index. But if we looked through a bitcast the original mask size doesn't tell us anything about the concat_vectors.
This patch switchs to using the concat_vectors input element count directly instead.
Differential Revision: https://reviews.llvm.org/D53823
llvm-svn: 345626
|
| |
|
|
|
|
| |
Was disabled again in r345528. Hopefully this the bots.
llvm-svn: 345593
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The final pattern.
There is no test changes:
* We are looking for the pattern with one-use of it's mask,
* If the mask is one-use, D48768 will unfold it into pattern d.
* Thus, the tests have extra-use on the mask.
* Thus, only the BMI2 BZHI can be tested, and it already worked.
* So there is no BMI1 test coverage, we just assume it works since it uses the same codepath.
Reviewers: craig.topper, RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53575
llvm-svn: 345584
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
vector output type and a vector input type that needs to be widened
Summary: Previously if we had a bitcast vector output type that needs promotion and a vector input type that needs widening we would just do a stack store and load to handle the conversion. We can do a little better if we can widen the bitcast to a legal vector type the same size as the widened input type. Then we can do the bitcast between this widened type and the widened input type. Afterwards we can extract_subvector back to the original output and any_extend that. Type legalization will then circle back and handle promotion of the extract_subvector and the any_extend will just be removed. This will avoid going through the stack and allows us to remove a custom version of this legalization from X86.
Reviewers: efriedma, RKSimon
Reviewed By: efriedma
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D53229
llvm-svn: 345567
|
| |
|
|
|
|
| |
Use SelectionDAG::EVTToAPFloatSemantics. Make the LogicVT calculation in LowerFABSorFNEG similar to LowerFCOPYSIGN. Use APInt::getSignedMaxValue instead of ~APInt::getSignMask.
llvm-svn: 345565
|
| |
|
|
|
|
| |
The additional patterns don't cost us much and it seems better than changing element widths.
llvm-svn: 345564
|
| |
|
|
|
|
| |
Put back the isMachineVerifierClean() override removed at rL345513 to fix Windows ThinLTO tests
llvm-svn: 345528
|
| |
|
|
|
|
|
|
| |
inserted subvectors
Part of the issue discovered in PR39483, although its not fully exposed until I reapply rL345395 (by reverting rL345451)
llvm-svn: 345520
|
| |
|
|
|
|
| |
I believe this was lost from KNL when AES was pushed from Westmere to Skylake recently. KNL used to inherit from IVB.
llvm-svn: 345519
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The machine verifier was disabled for x86 by default. There are now only
9 tests failing, compared to what previously was between 20 and 30.
This is a good opportunity to file bugs for all the remaining issues,
then explicitly disable the failing tests and enabling the machine
verifier by default.
This allows us to avoid adding new tests that break the verifier.
PR27481
llvm-svn: 345513
|
| |
|
|
|
|
|
|
|
|
| |
scientific notation so they can't be confused with integers.
When the floating point constants are whole numbers they have no decimal point so look like integers, but mean something very different in something like an 'and' instruction.
Ideally we would just print a decimal point and a 0, but I couldn't see how to make APFloat::toString do that.
llvm-svn: 345488
|
| |
|
|
| |
llvm-svn: 345484
|
| |
|
|
|
|
|
|
| |
Add vector support to TargetLowering::expandFP_TO_UINT.
This exposes an issue in X86TargetLowering::LowerVSELECT which was assuming that the select mask was the same width as the LHS/RHS ops - as long as the result is a sign splat we can easily sext/trunk this.
llvm-svn: 345473
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
# Overview
This is somewhat partial.
* Latencies are good {F7371125}
* All of these remaining inconsistencies //appear// to be noise/noisy/flaky.
* NumMicroOps are somewhat good {F7371158}
* Most of the remaining inconsistencies are from `Ld` / `Ld_ReadAfterLd` classes
* Actual unit occupation (pipes, `ResourceCycles`) are undiscovered lands, i did not really look there.
They are basically verbatum copy from `btver2`
* Many `InstRW`. And there are still inconsistencies left...
To be noted:
I think this is the first new schedule profile produced with the new next-gen tools like llvm-exegesis!
# Benchmark
I realize that isn't what was suggested, but i'll start with some "internal" public real-world benchmark i understand - [[ https://github.com/darktable-org/rawspeed | RawSpeed raw image decoding library ]].
Diff (the exact clang from trunk without/with this patch):
```
Comparing /home/lebedevri/rawspeed/build-old/src/utilities/rsbench/rsbench to /home/lebedevri/rawspeed/build-new/src/utilities/rsbench/rsbench
Benchmark Time CPU Time Old Time New CPU Old CPU New
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Canon/EOS 5D Mark II/09.canon.sraw1.cr2/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25
Canon/EOS 5D Mark II/09.canon.sraw1.cr2/threads:8/real_time_mean -0.0607 -0.0604 234 219 233 219
Canon/EOS 5D Mark II/09.canon.sraw1.cr2/threads:8/real_time_median -0.0630 -0.0626 233 219 233 219
Canon/EOS 5D Mark II/09.canon.sraw1.cr2/threads:8/real_time_stddev +0.2581 +0.2587 1 2 1 2
Canon/EOS 5D Mark II/10.canon.sraw2.cr2/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25
Canon/EOS 5D Mark II/10.canon.sraw2.cr2/threads:8/real_time_mean -0.0770 -0.0767 144 133 144 133
Canon/EOS 5D Mark II/10.canon.sraw2.cr2/threads:8/real_time_median -0.0767 -0.0763 144 133 144 133
Canon/EOS 5D Mark II/10.canon.sraw2.cr2/threads:8/real_time_stddev -0.4170 -0.4156 1 0 1 0
Canon/EOS 5DS/2K4A9927.CR2/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25
Canon/EOS 5DS/2K4A9927.CR2/threads:8/real_time_mean -0.0271 -0.0270 463 450 463 450
Canon/EOS 5DS/2K4A9927.CR2/threads:8/real_time_median -0.0093 -0.0093 453 449 453 449
Canon/EOS 5DS/2K4A9927.CR2/threads:8/real_time_stddev -0.7280 -0.7280 13 4 13 4
Canon/EOS 5DS/2K4A9928.CR2/threads:8/real_time_pvalue 0.0004 0.0004 U Test, Repetitions: 25 vs 25
Canon/EOS 5DS/2K4A9928.CR2/threads:8/real_time_mean -0.0065 -0.0065 569 565 569 565
Canon/EOS 5DS/2K4A9928.CR2/threads:8/real_time_median -0.0077 -0.0077 569 564 569 564
Canon/EOS 5DS/2K4A9928.CR2/threads:8/real_time_stddev +1.0077 +1.0068 2 5 2 5
Canon/EOS 5DS/2K4A9929.CR2/threads:8/real_time_pvalue 0.0220 0.0199 U Test, Repetitions: 25 vs 25
Canon/EOS 5DS/2K4A9929.CR2/threads:8/real_time_mean +0.0006 +0.0007 312 312 312 312
Canon/EOS 5DS/2K4A9929.CR2/threads:8/real_time_median +0.0031 +0.0032 311 312 311 312
Canon/EOS 5DS/2K4A9929.CR2/threads:8/real_time_stddev -0.7069 -0.7072 4 1 4 1
Canon/EOS 10D/CRW_7673.CRW/threads:8/real_time_pvalue 0.0004 0.0004 U Test, Repetitions: 25 vs 25
Canon/EOS 10D/CRW_7673.CRW/threads:8/real_time_mean -0.0015 -0.0015 141 141 141 141
Canon/EOS 10D/CRW_7673.CRW/threads:8/real_time_median -0.0010 -0.0011 141 141 141 141
Canon/EOS 10D/CRW_7673.CRW/threads:8/real_time_stddev -0.1486 -0.1456 0 0 0 0
Canon/EOS 40D/_MG_0154.CR2/threads:8/real_time_pvalue 0.6139 0.8766 U Test, Repetitions: 25 vs 25
Canon/EOS 40D/_MG_0154.CR2/threads:8/real_time_mean -0.0008 -0.0005 60 60 60 60
Canon/EOS 40D/_MG_0154.CR2/threads:8/real_time_median -0.0006 -0.0002 60 60 60 60
Canon/EOS 40D/_MG_0154.CR2/threads:8/real_time_stddev -0.1467 -0.1390 0 0 0 0
Canon/EOS 77D/IMG_4049.CR2/threads:8/real_time_pvalue 0.0137 0.0137 U Test, Repetitions: 25 vs 25
Canon/EOS 77D/IMG_4049.CR2/threads:8/real_time_mean +0.0002 +0.0002 275 275 275 275
Canon/EOS 77D/IMG_4049.CR2/threads:8/real_time_median -0.0015 -0.0014 275 275 275 275
Canon/EOS 77D/IMG_4049.CR2/threads:8/real_time_stddev +3.3687 +3.3587 0 2 0 2
Canon/PowerShot G1/crw_1693.crw/threads:8/real_time_pvalue 0.4041 0.3933 U Test, Repetitions: 25 vs 25
Canon/PowerShot G1/crw_1693.crw/threads:8/real_time_mean +0.0004 +0.0004 67 67 67 67
Canon/PowerShot G1/crw_1693.crw/threads:8/real_time_median -0.0000 -0.0000 67 67 67 67
Canon/PowerShot G1/crw_1693.crw/threads:8/real_time_stddev +0.1947 +0.1995 0 0 0 0
Fujifilm/GFX 50S/20170525_0037TEST.RAF/threads:8/real_time_pvalue 0.0074 0.0001 U Test, Repetitions: 25 vs 25
Fujifilm/GFX 50S/20170525_0037TEST.RAF/threads:8/real_time_mean -0.0092 +0.0074 547 542 25 25
Fujifilm/GFX 50S/20170525_0037TEST.RAF/threads:8/real_time_median -0.0054 +0.0115 544 541 25 25
Fujifilm/GFX 50S/20170525_0037TEST.RAF/threads:8/real_time_stddev -0.4086 -0.3486 8 5 0 0
Fujifilm/X-Pro2/_DSF3051.RAF/threads:8/real_time_pvalue 0.3320 0.0000 U Test, Repetitions: 25 vs 25
Fujifilm/X-Pro2/_DSF3051.RAF/threads:8/real_time_mean +0.0015 +0.0204 218 218 12 12
Fujifilm/X-Pro2/_DSF3051.RAF/threads:8/real_time_median +0.0001 +0.0203 218 218 12 12
Fujifilm/X-Pro2/_DSF3051.RAF/threads:8/real_time_stddev +0.2259 +0.2023 1 1 0 0
GoPro/HERO6 Black/GOPR9172.GPR/threads:8/real_time_pvalue 0.0000 0.0001 U Test, Repetitions: 25 vs 25
GoPro/HERO6 Black/GOPR9172.GPR/threads:8/real_time_mean -0.0209 -0.0179 96 94 90 88
GoPro/HERO6 Black/GOPR9172.GPR/threads:8/real_time_median -0.0182 -0.0155 95 93 90 88
GoPro/HERO6 Black/GOPR9172.GPR/threads:8/real_time_stddev -0.6164 -0.2703 2 1 2 1
Kodak/DCS Pro 14nx/D7465857.DCR/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25
Kodak/DCS Pro 14nx/D7465857.DCR/threads:8/real_time_mean -0.0098 -0.0098 176 175 176 175
Kodak/DCS Pro 14nx/D7465857.DCR/threads:8/real_time_median -0.0126 -0.0126 176 174 176 174
Kodak/DCS Pro 14nx/D7465857.DCR/threads:8/real_time_stddev +6.9789 +6.9157 0 2 0 2
Nikon/D850/Nikon-D850-14bit-lossless-compressed.NEF/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25
Nikon/D850/Nikon-D850-14bit-lossless-compressed.NEF/threads:8/real_time_mean -0.0237 -0.0238 474 463 474 463
Nikon/D850/Nikon-D850-14bit-lossless-compressed.NEF/threads:8/real_time_median -0.0267 -0.0267 473 461 473 461
Nikon/D850/Nikon-D850-14bit-lossless-compressed.NEF/threads:8/real_time_stddev +0.7179 +0.7178 3 5 3 5
Olympus/E-M1MarkII/Olympus_EM1mk2__HIRES_50MP.ORF/threads:8/real_time_pvalue 0.6837 0.6554 U Test, Repetitions: 25 vs 25
Olympus/E-M1MarkII/Olympus_EM1mk2__HIRES_50MP.ORF/threads:8/real_time_mean -0.0014 -0.0013 1375 1373 1375 1373
Olympus/E-M1MarkII/Olympus_EM1mk2__HIRES_50MP.ORF/threads:8/real_time_median +0.0018 +0.0019 1371 1374 1371 1374
Olympus/E-M1MarkII/Olympus_EM1mk2__HIRES_50MP.ORF/threads:8/real_time_stddev -0.7457 -0.7382 11 3 10 3
Panasonic/DC-G9/P1000476.RW2/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25
Panasonic/DC-G9/P1000476.RW2/threads:8/real_time_mean -0.0080 -0.0289 22 22 10 10
Panasonic/DC-G9/P1000476.RW2/threads:8/real_time_median -0.0070 -0.0287 22 22 10 10
Panasonic/DC-G9/P1000476.RW2/threads:8/real_time_stddev +1.0977 +0.6614 0 0 0 0
Panasonic/DC-GH5/_T012014.RW2/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25
Panasonic/DC-GH5/_T012014.RW2/threads:8/real_time_mean +0.0132 +0.0967 35 36 10 11
Panasonic/DC-GH5/_T012014.RW2/threads:8/real_time_median +0.0132 +0.0956 35 36 10 11
Panasonic/DC-GH5/_T012014.RW2/threads:8/real_time_stddev -0.0407 -0.1695 0 0 0 0
Panasonic/DC-GH5S/P1022085.RW2/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25
Panasonic/DC-GH5S/P1022085.RW2/threads:8/real_time_mean +0.0331 +0.1307 13 13 6 6
Panasonic/DC-GH5S/P1022085.RW2/threads:8/real_time_median +0.0430 +0.1373 12 13 6 6
Panasonic/DC-GH5S/P1022085.RW2/threads:8/real_time_stddev -0.9006 -0.8847 1 0 0 0
Pentax/645Z/IMGP2837.PEF/threads:8/real_time_pvalue 0.0016 0.0010 U Test, Repetitions: 25 vs 25
Pentax/645Z/IMGP2837.PEF/threads:8/real_time_mean -0.0023 -0.0024 395 394 395 394
Pentax/645Z/IMGP2837.PEF/threads:8/real_time_median -0.0029 -0.0030 395 394 395 393
Pentax/645Z/IMGP2837.PEF/threads:8/real_time_stddev -0.0275 -0.0375 1 1 1 1
Phase One/P65/CF027310.IIQ/threads:8/real_time_pvalue 0.0232 0.0000 U Test, Repetitions: 25 vs 25
Phase One/P65/CF027310.IIQ/threads:8/real_time_mean -0.0047 +0.0039 114 113 28 28
Phase One/P65/CF027310.IIQ/threads:8/real_time_median -0.0050 +0.0037 114 113 28 28
Phase One/P65/CF027310.IIQ/threads:8/real_time_stddev -0.0599 -0.2683 1 1 0 0
Samsung/NX1/2016-07-23-142101_sam_9364.srw/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25
Samsung/NX1/2016-07-23-142101_sam_9364.srw/threads:8/real_time_mean +0.0206 +0.0207 405 414 405 414
Samsung/NX1/2016-07-23-142101_sam_9364.srw/threads:8/real_time_median +0.0204 +0.0205 405 414 405 414
Samsung/NX1/2016-07-23-142101_sam_9364.srw/threads:8/real_time_stddev +0.2155 +0.2212 1 1 1 1
Samsung/NX30/2015-03-07-163604_sam_7204.srw/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25
Samsung/NX30/2015-03-07-163604_sam_7204.srw/threads:8/real_time_mean -0.0109 -0.0108 147 145 147 145
Samsung/NX30/2015-03-07-163604_sam_7204.srw/threads:8/real_time_median -0.0104 -0.0103 147 145 147 145
Samsung/NX30/2015-03-07-163604_sam_7204.srw/threads:8/real_time_stddev -0.4919 -0.4800 0 0 0 0
Samsung/NX3000/_3184416.SRW/threads:8/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 25 vs 25
Samsung/NX3000/_3184416.SRW/threads:8/real_time_mean -0.0149 -0.0147 220 217 220 217
Samsung/NX3000/_3184416.SRW/threads:8/real_time_median -0.0173 -0.0169 221 217 220 217
Samsung/NX3000/_3184416.SRW/threads:8/real_time_stddev +1.0337 +1.0341 1 3 1 3
Sony/DSLR-A350/DSC05472.ARW/threads:8/real_time_pvalue 0.0001 0.0001 U Test, Repetitions: 25 vs 25
Sony/DSLR-A350/DSC05472.ARW/threads:8/real_time_mean -0.0019 -0.0019 194 193 194 193
Sony/DSLR-A350/DSC05472.ARW/threads:8/real_time_median -0.0021 -0.0021 194 193 194 193
Sony/DSLR-A350/DSC05472.ARW/threads:8/real_time_stddev -0.4441 -0.4282 0 0 0 0
Sony/ILCE-7RM2/14-bit-compressed.ARW/threads:8/real_time_pvalue 0.0000 0.4263 U Test, Repetitions: 25 vs 25
Sony/ILCE-7RM2/14-bit-compressed.ARW/threads:8/real_time_mean +0.0258 -0.0006 81 83 19 19
Sony/ILCE-7RM2/14-bit-compressed.ARW/threads:8/real_time_median +0.0235 -0.0011 81 82 19 19
Sony/ILCE-7RM2/14-bit-compressed.ARW/threads:8/real_time_stddev +0.1634 +0.1070 1 1 0 0
```
{F7443905}
If we look at the `_mean`s, the time column, the biggest win is `-7.7%` (`Canon/EOS 5D Mark II/10.canon.sraw2.cr2`),
and the biggest loose is `+3.3%` (`Panasonic/DC-GH5S/P1022085.RW2`);
Overall: mean `-0.7436%`, median `-0.23%`, `cbrt(sum(time^3))` = `-8.73%`
Looks good so far i'd say.
llvm-exegesis details:
{F7371117} {F7371125}
{F7371128} {F7371144} {F7371158}
Reviewers: craig.topper, RKSimon, andreadb, courbet, avt77, spatel, GGanesh
Reviewed By: andreadb
Subscribers: javed.absar, gbedwell, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52779
llvm-svn: 345463
|
| |
|
|
| |
llvm-svn: 345458
|
| |
|
|
|
|
|
|
|
|
| |
resolveTargetShuffleInputs
Makes no difference to actual shuffle decoding yet, but merges all the existing limits in one place for when proper support is fixed.
........
Its been reported that this is causing out of trunk failures.
llvm-svn: 345451
|
| |
|
|
|
|
| |
that use the avx512 extended register classes when they are available.
llvm-svn: 345448
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The main challenge here is that X86InstrInfo::AnalyzeBranch doesn't
understand the way we're using a CALL instruction as a branch, so we
can't list the CallTarget MBB as a successor of the entry block. If we
don't list it as a successor, then the AsmPrinter doesn't print a label
for the MBB.
Fix the issue by inserting our own label at the beginning of the call
target block. We can rely on the AsmPrinter to always emit it, even
though the block appears to be unreachable, but address-taken.
Fixes PR38391.
Reviewers: thegameg, chandlerc, echristo
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D53653
llvm-svn: 345426
|
| |
|
|
|
|
|
|
|
|
|
|
| |
These promotions add additional bitcasts to the SelectionDAG that can pessimize computeKnownBits/computeNumSignBits. It also seems to interfere with broadcast formation.
This patch removes the promotion and adds isel patterns instead.
The increased table size is more than I would like, but hopefully we can find some canonicalizations or other tricks to start pruning out patterns going forward.
Differential Revision: https://reviews.llvm.org/D53268
llvm-svn: 345408
|
| |
|
|
|
|
|
|
| |
resolveTargetShuffleInputs
Makes no difference to actual shuffle decoding yet, but merges all the existing limits in one place for when proper support is fixed.
llvm-svn: 345395
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a narrow fix for 1 of the problems mentioned in PR27780:
https://bugs.llvm.org/show_bug.cgi?id=27780
I looked at more general solutions, but it's a mess. We canonicalize shuffle masks
based on the number of elements accessed from each operand, and that's not optional.
If you remove that, we'll crash because we fail to match isel patterns. So I'm
waiting until we're sure that we have blendvb with constant condition and then
commuting based on the load potential. Other cases like blend-with-immediate are
already handled elsewhere, so this is probably not a common problem anyway.
I didn't use "MayFoldLoad" because that checks for one-use and in these cases, we've
screwed that up by creating a temporary PSHUFB using these operands that we're counting
on to be killed later. Undoing that didn't look like a simple task because it's
intertwined with determining if we actually use both operands of the shuffle or not.a
Differential Revision: https://reviews.llvm.org/D53737
llvm-svn: 345390
|
| |
|
|
| |
llvm-svn: 345388
|
| |
|
|
|
|
|
|
|
|
|
|
| |
instead of 'required-vector-width' when determining whether 512-bit vectors should be legal.
The required-vector-width attribute was only used for backend testing and has never been generated by clang.
I believe clang is now generating min-legal-vector-width for vector uses in user code.
With this I believe passing -mprefer-vector-width=256 to clang should prevent use of zmm registers in the generated assembly unless the user used a 512-bit intrinsic in their source code.
llvm-svn: 345317
|
| |
|
|
|
|
| |
one place it was checked.
llvm-svn: 345286
|
| |
|
|
|
|
|
|
|
|
| |
inherited from SNB/IVB incorrectly
KNL is based on a modified Silvermont core so I don't think these features apply. I think the LEA flag is probably also wrong, but I'm less sure as I barely understand the 3 LEA flags we have currently.
Differential Revision: https://reviews.llvm.org/D53671
llvm-svn: 345285
|
| |
|
|
|
|
| |
Match codegen improvements from D53649/rL345256
llvm-svn: 345263
|
| |
|
|
| |
llvm-svn: 345261
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The pfm counters are now in the ExegesisTarget rather than the
MCSchedModel (PR39165).
This also compresses the pfm counter tables (PR37068).
Reviewers: RKSimon, gchatelet
Subscribers: mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D52932
llvm-svn: 345243
|
| |
|
|
|
|
|
|
|
|
| |
PMULUDQ/PMULDQ inputs.
Multiply a is complex operation so just because some bit of the output isn't used doesn't mean that bit of the input isn't used.
We might able to bound it, but it will require some more thought.
llvm-svn: 345241
|
| |
|
|
| |
llvm-svn: 345236
|
| |
|
|
|
|
|
|
|
|
|
| |
Instead of using the MOVGOT64r pseudo, use the existing
MO_PIC_BASE_OFFSET support on symbol operands. Now I don't have to
create a "scratch register operand" for the pseudo to use, and the
register allocator can make better decisions.
Fixes some X86 verifier errors tracked in PR27481.
llvm-svn: 345219
|
| |
|
|
|
|
|
|
|
| |
It's possible to do a tail call to a stack argument. LLVM already
calculates the right stack offset to call through.
Fixes the sibcall* and musttail* verifier failures tracked at PR27481.
llvm-svn: 345197
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This renames the IsParsingMSInlineAsm member variable of AsmLexer to
LexMasmIntegers and moves it up to MCAsmLexer. This is the only behavior
controlled by that variable. I added a public setter, so that it can be
set from outside or from the llvm-mc command line. We may need to
arrange things so that users can get this behavior from clang, but
that's future work.
I also put additional hex literal lexing functionality under this flag
to fix PR32973. It appears that this hex literal parsing wasn't intended
to be enabled in non-masm-style blocks.
Now, masm integers (0b1101 and 0ABCh) work in __asm blocks from clang,
but 0b label references work when using .intel_syntax in standalone .s
files.
However, 0b label references will *not* work from __asm blocks in clang.
They will work from GCC inline asm blocks, which it sounds like is
important for Crypto++ as mentioned in PR36144.
Essentially, we only lex masm literals for inline asm blobs that use
intel syntax. If the .intel_syntax directive is used inside a gnu-style
inline asm statement, masm literals will not be lexed, which is
compatible with gas and llvm-mc standalone .s assembly.
This fixes PR36144 and PR32973.
Reviewers: Gerolf, avt77
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D53535
llvm-svn: 345189
|
| |
|
|
|
|
| |
I'm not sure all the microarchitectural tuning flags that have been added to IVBFeatures are relevant for KNL. Separating will allow us to see and audit them. There might even be some simplification opportunities in the Sandy Bridge through Icelake inheritance line without KNL using the same chain.
llvm-svn: 345183
|
| |
|
|
|
|
|
|
|
|
| |
Add X86 SimplifyDemandedBitsForTargetNode and use it to simplify PMULDQ/PMULUDQ target nodes.
This enables us to repeatedly simplify the node's arguments after the previous approach had to be reverted due to PR39398.
Differential Revision: https://reviews.llvm.org/D53643
llvm-svn: 345182
|
| |
|
|
|
|
| |
ISD::MULHS/ISD::MULHU lowering of vXi8 types means we expand these in TargetLowering BuildSDIV/BuildUDIV.
llvm-svn: 345175
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This patch brings back the MOV64r0 pseudo instruction for zeroing a 64-bit register. This replaces the SUBREG_TO_REG MOV32r0 sequence we use today. Post register allocation we will rewrite the MOV64r0 to a 32-bit xor with an implicit def of the 64-bit register similar to what we do for the various XMM/YMM/ZMM zeroing pseudos.
My main motivation is to enable the spill optimization in foldMemoryOperandImpl. As we were seeing some code that repeatedly did "xor eax, eax; store eax;" to spill several registers with a new xor for each store. With this optimization enabled we get a store of a 0 immediate instead of an xor. Though I admit the ideal solution would be one xor where there are multiple spills. I don't believe we have a test case that shows this optimization in here. I'll see if I can try to reduce one from the code were looking at.
There's definitely some other machine CSE(and maybe other passes) behavior changes exposed by this patch. So it seems like there might be some other deficiencies in SUBREG_TO_REG handling.
Differential Revision: https://reviews.llvm.org/D52757
llvm-svn: 345165
|
| |
|
|
|
|
| |
Non-uniform division/remainder handling was added back at D49248/D50765 - so share the 'mul+sub' costs that already exist for uniform cases.
llvm-svn: 345164
|