| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
| |
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
|
| |
|
|
|
|
|
|
|
|
|
| |
Debug information is calculated with getFrameIndexReference() which was
missing some logic for the fixed object cases (= parameters on the stack).
rdar://24557797
Differential Revision: https://reviews.llvm.org/D32204
llvm-svn: 300781
|
| |
|
|
| |
llvm-svn: 283690
|
| |
|
|
|
|
| |
TargetRegisterInfo::getMatchingSuperReg.
llvm-svn: 282359
|
| |
|
|
|
|
|
|
| |
XMM16-XMM31 or YMM16-YMM31 are the source or dest of the copy and VLX is not supported.
This can happen with SUBREG_TO_REG of ZMM16-ZMM31. Fixes PR30430.
llvm-svn: 281959
|
| |
|
|
|
|
|
|
| |
AVX512, but not VLX. We should use the VEX opcodes and trust the register allocator to not use the extended XMM/YMM register space.
Previously we were extending to copying the whole ZMM register. The register allocator shouldn't use XMM16-31 or YMM16-31 in this configuration as the instructions to spill them aren't available.
llvm-svn: 280648
|
| |
|
|
|
|
|
| |
This is the same change on x86-64 as r255821 on AArch64.
rdar://9001553
llvm-svn: 257428
|
| |
|
|
|
|
| |
used by AsmParser library without depending on X86CodeGen library.
llvm-svn: 256428
|
| |
|
|
|
|
|
|
| |
getX86SubSuperRegister with just an unsigned representing size.
This a is step towards fixing a layering violation so the X86 AsmParser won't depending on CodeGen types.
llvm-svn: 256425
|
| |
|
|
|
|
|
|
|
|
| |
Caller saved regs differ between SysV and Win64. Use the tail call available set to scavenge from.
Refactor register info to create new helper to get at tail call GPRs. Added a new test case for windows. Fixed up a number of X64 tests since now RCX is preferred over RDX on SysV.
Differential Revision: http://reviews.llvm.org/D14878
llvm-svn: 253927
|
| |
|
|
|
|
|
|
|
| |
Calls involved in thread-local variable lookup save more registers
than normal calls.
rdar://problem/23073171
llvm-svn: 252837
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In this implementation, LiveIntervalAnalysis invents a few register
masks on basic block boundaries that preserve no registers. The nice
thing about this is that it prevents the prologue inserter from thinking
it needs to spill all XMM CSRs, because it doesn't see any explicit
physreg defs in the MI.
Reviewers: MatzeB, qcolombet, JosephTremoulet, majnemer
Subscribers: MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D14407
llvm-svn: 252318
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does the following:
* Fix FIXME on `needsStackRealignment`: it is now shared between multiple targets, implemented in `TargetRegisterInfo`, and isn't `virtual` anymore. This will break out-of-tree targets, silently if they used `virtual` and with a build error if they used `override`.
* Factor out `canRealignStack` as a `virtual` function on `TargetRegisterInfo`, by default only looks for the `no-realign-stack` function attribute.
Multiple targets duplicated the same `needsStackRealignment` code:
- Aarch64.
- ARM.
- Mips almost: had extra `DEBUG` diagnostic, which the default implementation now has.
- PowerPC.
- WebAssembly.
- x86 almost: has an extra `-force-align-stack` option, which the default implementation now has.
The default implementation of `needsStackRealignment` used to just return `false`. My current patch changes the behavior by simply using the above shared behavior. This affects:
- AMDGPU
- BPF
- CppBackend
- MSP430
- NVPTX
- Sparc
- SystemZ
- XCore
- Out-of-tree targets
This is a breaking change! `make check` passes.
The only implementation of the `virtual` function (besides the slight different in x86) was Hexagon (which did `MF.getFrameInfo()->getMaxAlignment() > 8`), and potentially some out-of-tree targets. Hexagon now uses the default implementation.
`needsStackRealignment` was being overwritten in `<Target>GenRegisterInfo.inc`, to return `false` as the default also did. That was odd and is now gone.
Reviewers: sunfish
Subscribers: aemerson, llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11160
llvm-svn: 242727
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a new version of http://reviews.llvm.org/D10260.
It turned out that when you specify an integer register in inline asm on
x86 you get the register of the required type size back. That means that
X86TargetLowering::getRegForInlineAsmConstraint() has to accept any of
the integer registers and adapt its size to the given target size which
may be any 8/16/32/64 bit sized type. Surprisingly that means given a
constraint of "{ax}" and a type of MVT::F32 we need to return X86::EAX.
This change makes this face explicit, the previous code seemed like
working by accident because there it never returned an error once a
register was found. On the other hand this rewrite allows to actually
return errors for invalid situations like requesting an integer register
for an i128 type.
Related to rdar://21042280
Differential Revision: http://reviews.llvm.org/D10813
llvm-svn: 241002
|
| |
|
|
|
|
| |
Apparently, the style needs to be agreed upon first.
llvm-svn: 240390
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Remove the EFLAGS from the stackmap live-out mask. The EFLAGS register is not
supposed to be part of that set, because the X86 calling conventions mark the
register as NOT preserved.
Also remove the IP registers, since spilling and restoring those doesn't really
make any sense.
Related to rdar://problem/21019635.
llvm-svn: 239568
|
| |
|
|
| |
llvm-svn: 237481
|
| |
|
|
|
|
|
| |
classes. Use a Triple instead and simplify a lot of the querying
logic to use lookups on the Triple.
llvm-svn: 232071
|
| |
|
|
|
|
| |
where they're supposed to reside.
llvm-svn: 232014
|
| |
|
|
|
|
|
| |
MachineFunction argument so that we can grab subtarget specific
features off of it.
llvm-svn: 231979
|
| |
|
|
|
|
|
| |
MachineFunction argument so that it can look up the subtarget
rather than using a cached one in some Targets.
llvm-svn: 231888
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Follow up to [x32] "Use ebp/esp as frame and stack pointer":
http://reviews.llvm.org/D4617
In that earlier patch, NaCl64 was made to always use rbp.
That's needed for most cases because rbp should hold a full
64-bit address within the NaCl sandbox so that load/stores
off of rbp don't require sandbox adjustment (zeroing the top
32-bits, then filling those by adding r15).
However, llvm.frameaddress returns a pointer and pointers
are 32-bit for NaCl64. In this case, use ebp instead, which
will make the register copy type check. A similar mechanism
may be needed for llvm.eh.return, but is not added in this change.
Test Plan: test/CodeGen/X86/frameaddr.ll
Reviewers: dschuff, nadav
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D6514
llvm-svn: 223510
|
| |
|
|
|
|
|
|
|
|
| |
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
|
| |
|
|
| |
llvm-svn: 212636
|
| |
|
|
|
|
| |
using the subtarget.
llvm-svn: 210595
|
| |
|
|
| |
llvm-svn: 207394
|
| |
|
|
| |
llvm-svn: 205610
|
| |
|
|
| |
llvm-svn: 205166
|
| |
|
|
|
|
|
| |
The current logic assumes that MF is not 0. Assert that it isn't, and
remove the default of 0 from the header.
llvm-svn: 203934
|
| |
|
|
|
|
| |
class.
llvm-svn: 203378
|
| |
|
|
|
|
| |
They haven't been used for a long time. Patch by MathOnNapkins.
llvm-svn: 192099
|
| |
|
|
|
|
|
|
| |
includes support for the extended register set XMM16-31, YMM16-31, ZMM0-31.
The full ISA you can see here: http://software.intel.com/en-us/intel-isa-extensions
llvm-svn: 187030
|
| |
|
|
|
|
|
|
| |
the internals of TargetMachine could change.
No functionality change intended.
llvm-svn: 183571
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.
There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.
The refactoring was OK'd by Anton Korobeynikov on llvmdev.
Note: this touches the target interfaces, so out-of-tree targets may
be affected.
llvm-svn: 175788
|
| |
|
|
|
|
|
| |
Each target implementation was needlessly recomputing the index.
Part of rdar://13076458
llvm-svn: 174083
|
| |
|
|
|
|
|
|
|
|
|
| |
- Besides used in SjLj exception handling, __builtin_setjmp/__longjmp is also
used as a light-weight replacement of setjmp/longjmp which are used to
implementation continuation, user-level threading, and etc. The support added
in this patch ONLY addresses this usage and is NOT intended to support SjLj
exception handling as zero-cost DWARF exception handling is used by default
in X86.
llvm-svn: 165989
|
| |
|
|
|
|
|
|
| |
- Add 'HwEncoding' for X86 registers and call getEncodingValue() to
retrieve their encoding values.
- This's the first step to adopt new scheme. Furthur revising is onging.
llvm-svn: 165241
|
| |
|
|
|
|
| |
EVT and add llvm_unreachable to the switches. Helps it compile to dramatically better code.
llvm-svn: 164919
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
X86. Basically, this is a reapplication of r158087 with a few fixes.
Specifically, (1) the stack pointer is restored from the base pointer before
popping callee-saved registers and (2) in obscure cases (see comments in patch)
we must cache the value of the original stack adjustment in the prologue and
apply it in the epilogue.
rdar://11496434
llvm-svn: 160002
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This patch causes problems when both dynamic stack realignment and
dynamic allocas combine in the same function. With this patch, we no
longer build the epilog correctly, and silently restore registers from
the wrong position in the stack.
Thanks to Matt for tracking this down, and getting at least an initial
test case to Chad. I'm going to try to check a variation of that test
case in so we can easily track the fixes required.
llvm-svn: 158654
|
| |
|
|
|
|
|
| |
X86.
rdar://11496434
llvm-svn: 158087
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
The getPointerRegClass() hook can return register classes that depend on
the calling convention of the current function (ptr_rc_tailcall).
So far, we have been able to infer the calling convention from the
subtarget alone, but as we add support for multiple calling conventions
per target, that no longer works.
Patch by Yiannis Tsiouris!
llvm-svn: 156328
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
on X86 Atom. Some of our tests failed because the tail merging part of
the BranchFolding pass was creating new basic blocks which did not
contain live-in information. When the anti-dependency code in the Post-RA
scheduler ran, it would sometimes rename the register containing
the function return value because the fact that the return value was
live-in to the subsequent block had been lost. To fix this, it is necessary
to run the RegisterScavenging code in the BranchFolding pass.
This patch makes sure that the register scavenging code is invoked
in the X86 subtarget only when post-RA scheduling is being done.
Post RA scheduling in the X86 subtarget is only done for Atom.
This patch adds a new function to the TargetRegisterClass to control
whether or not live-ins should be preserved during branch folding.
This is necessary in order for the anti-dependency optimizations done
during the PostRASchedulerList pass to work properly when doing
Post-RA scheduling for the X86 in general and for the Intel Atom in particular.
The patch adds and invokes the new function trackLivenessAfterRegAlloc()
instead of using the existing requiresRegisterScavenging().
It changes BranchFolding.cpp to call trackLivenessAfterRegAlloc() instead of
requiresRegisterScavenging(). It changes the all the targets that
implemented requiresRegisterScavenging() to also implement
trackLivenessAfterRegAlloc().
It adds an assertion in the Post RA scheduler to make sure that post RA
liveness information is available when it is needed.
It changes the X86 break-anti-dependencies test to use –mcpu=atom, in order
to avoid running into the added assertion.
Finally, this patch restores the use of anti-dependency checking
(which was turned off temporarily for the 3.1 release) for
Intel Atom in the Post RA scheduler.
Patch by Andy Zhang!
Thanks to Jakob and Anton for their reviews.
llvm-svn: 155395
|
| |
|
|
|
|
| |
size of static data.
llvm-svn: 151996
|
| |
|
|
|
|
| |
MSP430, PPC, PTX, Sparc, X86, XCore.
llvm-svn: 150878
|
| |
|
|
|
|
| |
Add a trivial implementation of the getCallPreservedMask() hook.
llvm-svn: 148347
|
| |
|
|
|
|
|
|
| |
There are fewer registers with sub_8bit sub-registers in 32-bit mode
than in 64-bit mode. In 32-bit mode, sub_8bit behaves the same as
sub_8bit_hi.
llvm-svn: 141206
|
| |
|
|
|
|
|
|
|
| |
to MCRegisterInfo. Also initialize the mapping at construction time.
This patch eliminate TargetRegisterInfo from TargetAsmInfo. It's another step
towards fixing the layering violation.
llvm-svn: 135424
|
| |
|
|
| |
llvm-svn: 134527
|