| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
| |
ISA 2.06
This is the patch corresponding to review:
http://reviews.llvm.org/D8406
It adds some missing instructions from ISA 2.06 to the PPC back end.
llvm-svn: 234546
|
| |
|
|
| |
llvm-svn: 234519
|
| |
|
|
| |
llvm-svn: 234506
|
| |
|
|
|
|
|
| |
This also moves it earlier so that it they are produced before we print
an end symbol for the data section.
llvm-svn: 234315
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When enabling PPC64LE, I disabled some optimizations of BUILD_VECTOR
nodes for little endian because wrong results were produced. I've
subsequently investigated and found this is due to a call to
BuildVectorSDNode::isConstantSplat that was always specifying
big-endian. With this changed to correctly identify the target
endianness, the optimizations work as expected.
I found another case of a call to the same method with big-endian
hardcoded, in PPC::isAllNegativeZeroVector(). I discovered this was
an orphaned method with no callers, so I've just removed it.
The existing test/CodeGen/PowerPC/vec_constants.ll checks these
optimizations, so for testing I've just added a variant for little
endian.
llvm-svn: 234011
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Under normal circumstances, use of CR bits is disabled when running at -O0, but
it is enabled by default otherwise, and if you have optnone functions, they'll
still generally be generated with crbits turned on (because nothing else turns
them off). FastISel can't handle most things dealing with i1 values when using
CR bits, and checks for that, but was not checking the return type on
functions; we can't fast-isel function calls with i1 return values either when
using CR bits for boolean values.
Fixes PR22664.
llvm-svn: 233775
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Even at -O0, we fall back to SDAG when we hit intrinsics, and if the intrinsic
is a memset/memcpy/etc. we might normally use vector types. At -O0, this is
probably not a good idea (because, if there is a bug in the lowering code,
there would be no good way to turn it off). At -O0, only use scalar preferred
types.
Related to PR22754.
llvm-svn: 233755
|
| |
|
|
|
|
| |
As was done for X86 in r206094.
llvm-svn: 233684
|
| |
|
|
|
|
|
| |
an MCInstPrinter. Update all callers and use where we wanted a Triple
previously.
llvm-svn: 233648
|
| |
|
|
| |
llvm-svn: 233607
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
instructions
The asm syntax for the 32-bit rotate-and-mask instructions can take a 32-bit
bitmask instead of an (mb, me) pair. This syntax is not specified in the Power
ISA manual, but is accepted by GNU as, and is documented in IBM's Assembler
Language Reference. The GNU Multiple Precision Arithmetic Library (gmp)
contains assembly that uses this syntax.
To implement this, I moved the isRunOfOnes utility function from
PPCISelDAGToDAG.cpp to PPCMCTargetDesc.h.
llvm-svn: 233483
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
per-function subtarget.
Currently, code-gen passes the default or generic subtarget to the constructors
of MCInstPrinter subclasses (see LLVMTargetMachine::addPassesToEmitFile), which
enables some targets (AArch64, ARM, and X86) to change their instprinter's
behavior based on the subtarget feature bits. Since the backend can now use
different subtargets for each function, instprinter has to be changed to use the
per-function subtarget rather than the default subtarget.
This patch takes the first step towards enabling instprinter to change its
behavior based on the per-function subtarget. It adds a bit "PassSubtarget" to
AsmWriter which tells table-gen to pass a reference to MCSubtargetInfo to the
various print methods table-gen auto-generates.
I will follow up with changes to instprinters of AArch64, ARM, and X86.
llvm-svn: 233411
|
| |
|
|
| |
llvm-svn: 233392
|
| |
|
|
|
|
|
|
|
| |
for PPC due to some unfortunate default setting via TargetMachine
creation. I've added a FIXME on how this can be unraveled in the
backend and a test to make sure we successfully legalize 64-bit things
if we say we're 64-bits.
llvm-svn: 233239
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds Hardware Transaction Memory (HTM) support supported by ISA 2.07
(POWER8). The intrinsic support is based on GCC one [1], but currently only the
'PowerPC HTM Low Level Built-in Function' are implemented.
The HTM instructions follows the RC ones and the transaction initiation result
is set on RC0 (with exception of tcheck). Currently approach is to create a
register copy from CR0 to GPR and comapring. Although this is suboptimal, since
the branch could be taken directly by comparing the CR0 value, it generates code
correctly on both test and branch and just return value. A possible future
optimization could be elimitate the MFCR instruction to branch directly.
The HTM usage requires a recently newer kernel with PPC HTM enabled. Tested on
powerpc64 and powerpc64le.
This is send along a clang patch to enabled the builtins and option switch.
[1] https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-Functions.html
Phabricator Review: http://reviews.llvm.org/D8247
llvm-svn: 233204
|
| |
|
|
|
|
|
| |
To complement getSplat. This is more general than the binary
decomposition method as it also handles non-pow2 splat sizes.
llvm-svn: 233195
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D8572
llvm-svn: 233133
|
| |
|
|
|
|
|
|
| |
This reverts commit r233055.
It still causes buildbot failures (gcc running out of memory on several platforms, and a self-host failure on arm), although less than the previous time.
llvm-svn: 233068
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first time this was committed (r229831), it caused several buildbot failures.
At least some of the ARM ones were due to gcc/binutils issues, and should now be fixed.
Differential Revision: http://reviews.llvm.org/D8542
llvm-svn: 233055
|
| |
|
|
|
|
|
| |
of this add a test that shows we can generate code with
for functions that differ by subtarget feature.
llvm-svn: 232882
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
LocalStackSlotPass assumes that isFrameOffsetLegal doesn't change its
answer when the base register changes. Unfortunately this isn't true
in thumb1, where SP-based loads allow a larger offset than
non-SP-based loads, and this causes the base register reuse code to
generate instructions that are unencodable, causing an assertion
failure.
Solve this by adding a BaseReg parameter to isFrameOffsetLegal, which
ARMBaseRegisterInfo can then make use of to give the correct answer.
Differential Revision: http://reviews.llvm.org/D8419
llvm-svn: 232825
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
There are two main advantages to doing this
* Targets that only need to handle one of the formats specially don't have
to worry about the others. For example, x86 now only registers a
constructor for the COFF streamer.
* Changes to the arguments passed to one format constructor will not impact
the other formats.
llvm-svn: 232699
|
| |
|
|
| |
llvm-svn: 232688
|
| |
|
|
| |
llvm-svn: 232681
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch code wanting to create temporary labels for a given entity
(function, cu, exception range, etc) had to keep its own counter to have stable
symbol names.
createTempSymbol would still add a suffix to make sure a new symbol was always
returned, but it kept a single counter. Because of that, if we were to use
just createTempSymbol("cu_begin"), the label could change from cu_begin42 to
cu_begin43 because some other code started using temporary labels.
Simplify this by just keeping one counter per prefix and removing the various
specialized counters.
llvm-svn: 232535
|
| |
|
|
|
|
|
|
| |
lowering.
We have observed that noreg was being generated due to a bug in FastIsel and was not being detected during emission. It happens that in the Asm emission there is an assertion that detects this in getRegisterName() from the tbl-generated file PPCGenAsmWriter.inc. However, when emitting an Obj file, invalid registers can be emitted given that no check are made in getBinaryCodeFromInstr() from PPCGenMCCodeEmitter.inc. In order to cover all cases this adds an assertion for reg operands in LowerPPCMachineInstrToMCInst.
llvm-svn: 232525
|
| |
|
|
|
|
| |
The VSX stores are sometimes generated with a undefined index register, causing %noreg to be used and R0 to be emitted later on. The semantics of the VSX store (e.g. stdsdx) requires R0 to be used as base if we want zero to be used in the computation of the effective address instead of the content of R0. This patch checks if no index register was generated and forces R0 to be used as base address.
llvm-svn: 232486
|
| |
|
|
| |
llvm-svn: 232483
|
| |
|
|
|
|
|
|
|
| |
constraints.
It's not completely clear why 'i' has historically been treated as a memory
constraint. According to the documentation, it represents a constant immediate.
llvm-svn: 232470
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
memory constraints.
Summary:
But still handle them the same way since I don't know how they differ on
this target.
Of these, 'es', and 'Q' do not have backend tests but are accepted by
clang.
No functional change intended. Depends on D8173.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8213
llvm-svn: 232466
|
| |
|
|
| |
llvm-svn: 232429
|
| |
|
|
| |
llvm-svn: 232428
|
| |
|
|
|
|
|
| |
Instead, have the targets register a TargetStreamer to be use with the
asm streamer (if any).
llvm-svn: 232423
|
| |
|
|
|
|
|
|
|
| |
uppercase letter
This covers essentially all of llvm's headers and libs. One or two weird
cases I wasn't sure were worth/appropriate to fix.
llvm-svn: 232394
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
InlineAsm::Constraint_m. NFC.
Summary:
This is instead of doing this in target independent code and is the last
non-functional change before targets begin to distinguish between
different memory constraints when selecting code for the ISD::INLINEASM
node.
Next, each target will individually move away from the idea that all
memory constraints behave like 'm'.
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8173
llvm-svn: 232373
|
| |
|
|
| |
llvm-svn: 232279
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
multiple memory constraints.
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break
anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate
Constraint_* values.
PR22883 was caused the matching operands copying the whole of the operand flags
for the matched operand. This included the constraint id which needed to be
replaced with the operand number. This has been fixed with a conversion
function. Following on from this, matching operands also used the operand
number as the constraint id. This has been fixed by looking up the matched
operand and taking it from there.
llvm-svn: 232165
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This (r232027) has caused PR22883; so it seems those bits might be used by
something else after all. Reverting until we can figure out what else to do.
Original commit message:
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate Constraint_*
values.
llvm-svn: 232093
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate Constraint_*
values.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8171
llvm-svn: 232027
|
| |
|
|
|
|
| |
where they're supposed to reside.
llvm-svn: 232014
|
| |
|
|
|
|
|
| |
classes. Replace it with a cache to the TargetMachine and use that
where applicable at the moment.
llvm-svn: 232002
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
I don't know why every singled backend had to redeclare its own DataLayout.
There was a virtual getDataLayout() on the common base TargetMachine, the
default implementation returned nullptr. It was not clear from this that
we could assume at call site that a DataLayout will be available with
each Target.
Now getDataLayout() is no longer virtual and return a pointer to the
DataLayout member of the common base TargetMachine. I plan to turn it into
a reference in a future patch.
The only backend that didn't have a DataLayout previsouly was the CPPBackend.
It now initializes the default DataLayout. This commit is NFC for all the
other backends.
Test Plan: clang+llvm ninja check-all
Reviewers: echristo
Subscribers: jfb, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8243
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231987
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The PowerPC backend had a number of loads that were marked as canFoldAsLoad
(and I'm partially at fault here for copying around the relevant line of
TableGen definitions without really looking at what it meant). This is not
right; PPC (non-memory) instructions don't support direct memory operands, and
so there is nothing a 'foldable' instruction could be folded into.
Noticed by inspection, no test case.
The one thing we might lose by doing this is ability to fold some loads into
stackmap/patchpoint pseudo-instructions. However, this was untested, and would
not obviously have worked for extending loads, and I'd rather re-add support
for that once it can be tested.
llvm-svn: 231982
|
| |
|
|
|
|
|
| |
MachineFunction argument so that we can grab subtarget specific
features off of it.
llvm-svn: 231979
|
| |
|
|
| |
llvm-svn: 231977
|
| |
|
|
| |
llvm-svn: 231946
|
| |
|
|
|
|
|
| |
MachineFunction argument so that it can look up the subtarget
rather than using a cached one in some Targets.
llvm-svn: 231888
|
| |
|
|
|
|
|
| |
update all ports accordingly. Required a couple of small rewrites
in handling subtarget features during creation in PPC.
llvm-svn: 231861
|
| |
|
|
|
|
| |
http://reviews.llvm.org/D8090#inline-67337
llvm-svn: 231843
|
| |
|
|
|
|
| |
Phabricator review: http://reviews.llvm.org/D8185
llvm-svn: 231827
|