summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp
Commit message (Collapse)AuthorAgeFilesLines
* Move all of the header files which are involved in modelling the LLVM IRChandler Carruth2013-01-021-1/+1
| | | | | | | | | | | | | | | | | | | | | into their new header subdirectory: include/llvm/IR. This matches the directory structure of lib, and begins to correct a long standing point of file layout clutter in LLVM. There are still more header files to move here, but I wanted to handle them in separate commits to make tracking what files make sense at each layer easier. The only really questionable files here are the target intrinsic tablegen files. But that's a battle I'd rather not fight today. I've updated both CMake and Makefile build systems (I think, and my tests think, but I may have missed something). I've also re-sorted the includes throughout the project. I'll be committing updates to Clang, DragonEgg, and Polly momentarily. llvm-svn: 171366
* Use the new script to sort the includes of every file under lib.Chandler Carruth2012-12-031-4/+4
| | | | | | | | | | | | | | | | | Sooooo many of these had incorrect or strange main module includes. I have manually inspected all of these, and fixed the main module include to be the nearest plausible thing I could find. If you own or care about any of these source files, I encourage you to take some time and check that these edits were sensible. I can't have broken anything (I strictly added headers, and reordered them, never removed), but they may not be the headers you'd really like to identify as containing the API being implemented. Many forward declarations and missing includes were added to a header files to allow them to parse cleanly when included first. The main module rule does in fact have its merits. =] llvm-svn: 169131
* Don't use getNextOperandForReg().Jakob Stoklund Olesen2012-08-081-1/+4
| | | | | | | | | This way of using getNextOperandForReg() was unlikely to work as intended. We don't give any guarantees about the order of operands in the use-def chains, so looking only at operands following a given operand in the chain doesn't make sense. llvm-svn: 161542
* Cleanup trip-count finding for PPC CTR loops (and some bug fixes).Hal Finkel2012-06-161-86/+127
| | | | | | | | | | | | | | This cleans up the method used to find trip counts in order to form CTR loops on PPC. This refactoring allows the pass to find loops which have a constant trip count but also happen to end with a comparison to zero. This also adds explicit FIXMEs to mark two different classes of loops that are currently ignored. In addition, we now search through all potential induction operations instead of just the first. Also, we check the predicate code on the conditional branch and abort the transformation if the code is not EQ or NE, and we then make sure that the branch to be transformed matches the condition register defined by the comparison (multiple possible comparisons will be considered). llvm-svn: 158607
* Fix a bug in the new PPC CTR-Loops pass.Hal Finkel2012-06-081-0/+1
| | | | | | | | | The code which tests for an induction operation cannot assume that any ADDI instruction will have a register operand because the operand could also be a frame index; for example: %vreg16<def> = ADDI8 <fi#0>, 0; G8RC:%vreg16 llvm-svn: 158205
* Add the PPCCTRLoops pass: a PPC machine-code-level optimization pass to form ↵Hal Finkel2012-06-081-0/+679
CTR-based loop branching code. This pass is derived from the Hexagon HardwareLoops pass. The only significant enhancement over the Hexagon pass is that PPCCTRLoops will also attempt to delete the replaced add and compare operations if they are no longer otherwise used. Also, invalid preheader DebugLoc is not used. llvm-svn: 158204
OpenPOWER on IntegriCloud