| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
Do not mark them as modifying any of the volatile registers by default.
llvm-svn: 267433
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This adds the same checks that were added in r264593 to all
target-specific passes that run after register allocation.
Reviewers: qcolombet
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18525
llvm-svn: 265313
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265036
|
|
|
|
| |
llvm-svn: 264584
|
|
|
|
| |
llvm-svn: 264581
|
|
|
|
|
|
|
|
| |
- Do not optimize stack slots in optnone functions.
- Get aligned-base register from HexagonMachineFunctionInfo instead of
looking for ALIGNA instruction in the function's body.
llvm-svn: 264580
|
|
|
|
| |
llvm-svn: 264331
|
|
|
|
|
|
| |
Patch by Sundeep Kushwaha.
llvm-svn: 264328
|
|
|
|
|
|
|
|
|
|
|
|
| |
In PIC mode, the registers R14, R15 and R28 are reserved for use by
the PLT handling code. This causes all functions to clobber these
registers. While this is not new for regular function calls, it does
also apply to save/restore functions, which do not follow the standard
ABI conventions with respect to the volatile/non-volatile registers.
Patch by Jyotsna Verma.
llvm-svn: 264324
|
|
|
|
|
|
|
| |
- R10 and R11 are not reserved registers.
- Check for reserved registers when finding unused caller-saved registers.
llvm-svn: 263977
|
|
|
|
|
|
|
|
| |
Change MachineInstr API to prefer MachineInstr& over MachineInstr*
whenever the parameter is expected to be non-null. Slowly inching
toward being able to fix PR26753.
llvm-svn: 262149
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest). All of these
functions require non-null parameters already, so references are more
clear. As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.
No functionality change intended.
llvm-svn: 261605
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a little embarrassing.
When I reverted r261504 (getIterator() => getInstrIterator()) in
r261567, I did a `git grep` to see if there were new calls to
`getInstrIterator()` that I needed to migrate. There were 10-20 hits,
and I blindly did a `sed ...` before calling `ninja check`.
However, these were `MachineInstrBundleIterator::getInstrIterator()`,
which predated r261567. Perhaps coincidentally, these had an identical
name and return type.
This commit undoes my careless sed and restores
`MachineBasicBlock::iterator::getInstrIterator()`.
llvm-svn: 261577
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit r261504, since it's not obvious the new name is
better:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160222/334298.html
I'll recommit if we get consensus that it's the right direction.
llvm-svn: 261567
|
|
|
|
| |
llvm-svn: 261096
|
|
|
|
|
|
|
| |
Gcc 4.7.2-4 does not seem to have "emplace" in its implementation of map.
This should fix the build failure on polly-amd64-linux.
llvm-svn: 260816
|
|
|
|
|
|
| |
SlotInfo() instead of member initializers.
llvm-svn: 260812
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Replace spills to memory with spills to registers, if possible. This
applies mostly to predicate registers (both scalar and vector), since
they are very limited in number. A spill of a predicate register may
happen even if there is a general-purpose register available. In cases
like this the stack spill/reload may be eliminated completely.
This optimization will consider all stack objects, regardless of where
they came from and try to match the live range of the stack slot with
a dead range of a register from an appropriate register class.
llvm-svn: 260758
|
|
|
|
|
|
|
|
|
| |
Rewrite the code to handle all pseudo-instructions in a single pass.
This temporarily reverts spill slot optimization that used general-
purpose registers to hold values of spilled predicate registers.
llvm-svn: 260696
|
|
|
|
|
|
| |
Patch by Tobias Edler Von Koch.
llvm-svn: 258527
|
|
|
|
| |
llvm-svn: 257804
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are two things out of the ordinary in this commit. First, I made
a loop obviously "infinite" in HexagonInstrInfo.cpp. After checking if
an instruction was at the beginning of a basic block (in which case,
`break`), the loop decremented and checked the iterator for `nullptr` as
the loop condition. This has never been possible (the prev pointers are
always been circular, so even with the weird ilist/iplist
implementation, this isn't been possible), so I removed the condition.
Second, in HexagonAsmPrinter.cpp there was another case of comparing a
`MachineBasicBlock::instr_iterator` against `MachineBasicBlock::end()`
(which returns `MachineBasicBlock::iterator`). While not incorrect,
it's fragile. I switched this to `::instr_end()`.
All that said, no functionality change intended here.
llvm-svn: 250778
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Isolate the check for the existence of a stack frame into hasFP.
- Implement getFrameIndexReference for DWARF address computation.
- Use getFrameIndexReference for offset computation in eliminateFrameIndex.
- Preserve debug information for dynamically allocated stack objects.
- Prefer FP to access local objects at -O0.
- Add experimental code to skip allocframe when not strictly necessary
(disabled by default).
llvm-svn: 250718
|
|
|
|
|
|
|
| |
Emit the CFI instructions after all code transformation have been done.
This will avoid any interference between CFI instructions and packetization.
llvm-svn: 250714
|
|
|
|
| |
llvm-svn: 248617
|
|
|
|
|
|
|
|
|
|
|
| |
function.
This was the same as getFrameIndexReference, but without the FrameReg
output.
Differential Revision: http://reviews.llvm.org/D12042
llvm-svn: 245148
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).
Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.
This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.
Differential Revision: http://reviews.llvm.org/D11734
llvm-svn: 243994
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We have a detailed def/use lists for every physical register in
MachineRegisterInfo anyway, so there is little use in maintaining an
additional bitset of which ones are used.
Removing it frees us from extra book keeping. This simplifies
VirtRegMap.
Differential Revision: http://reviews.llvm.org/D10911
llvm-svn: 242173
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes TargetFrameLowering::processFunctionBeforeCalleeSavedScan():
- Rename the function to determineCalleeSaves()
- Pass a bitset of callee saved registers by reference, thus avoiding
the function-global PhysRegUsed bitset in MachineRegisterInfo.
- Without PhysRegUsed the implementation is fine tuned to not save
physcial registers which are only read but never modified.
Related to rdar://21539507
Differential Revision: http://reviews.llvm.org/D10909
llvm-svn: 242165
|
|
|
|
|
|
| |
Apparently, the style needs to be agreed upon first.
llvm-svn: 240390
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
MIOperands/ConstMIOperands are classes iterating over the MachineOperand
of a MachineInstr, however MachineInstr::mop_iterator does the same
thing.
I assume these two iterators exist to have a uniform interface to
iterate over the operands of a machine instruction bundle and a single
machine instruction. However in practice I find it more confusing to have 2
different iterator classes, so this patch transforms (nearly all) the
code to use mop_iterators.
The only exception being MIOperands::anlayzePhysReg() and
MIOperands::analyzeVirtReg() still needing an equivalent, I leave that
as an exercise for the next patch.
Differential Revision: http://reviews.llvm.org/D9932
This version is slightly modified from the proposed revision in that it
introduces MachineInstr::getOperandNo to avoid the extra counting
variable in the few loops that previously used MIOperands::getOperandNo.
llvm-svn: 238539
|
|
|
|
|
|
|
| |
The naming was a mish-mash of old and new style. Update to be consistent
with the new. NFC.
llvm-svn: 237594
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.
As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.
** Context **
Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.
** Motivating example **
Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f: ; @f
; BB#0:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
LBB0_2: ; %false
mov sp, x29
ldp x29, x30, [sp], #16
ret
With shrink-wrapping we could generate:
_f: ; @f
; BB#0:
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
add sp, x29, #16 ; =16
ldp x29, x30, [sp], #16
LBB0_2: ; %false
ret
Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.
** Proposed Solution **
This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.
Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.
The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.
Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.
** Design Decisions **
1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.
Differential Revision: http://reviews.llvm.org/D9210
<rdar://problem/3201744>
llvm-svn: 236507
|
|
|
|
| |
llvm-svn: 235646
|
|
|
|
| |
llvm-svn: 235645
|
|
|
|
|
|
| |
Patch by Aditya Nandakumar.
llvm-svn: 235635
|
|
|
|
| |
llvm-svn: 235603
|
|
|
|
| |
llvm-svn: 235525
|
|
|
|
|
|
|
|
| |
- Use static allocation for aligned stack objects.
- Simplify dynamic stack object allocation.
- Simplify elimination of frame-indices.
llvm-svn: 235521
|
|
|
|
|
|
| |
versus tail calling.
llvm-svn: 231713
|
|
|
|
| |
llvm-svn: 228614
|
|
|
|
|
|
| |
the TargetMachine.
llvm-svn: 227839
|
|
|
|
| |
llvm-svn: 225267
|
|
|
|
|
|
| |
post-increment circular register stores, and bit reversed post-increment stores.
llvm-svn: 224957
|
|
|
|
| |
llvm-svn: 224869
|
|
|
|
| |
llvm-svn: 222571
|
|
|
|
|
|
| |
Adding test to show correct instruction selection and encoding.
llvm-svn: 222249
|
|
|
|
|
|
|
|
|
|
|
| |
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
|
|
|
|
|
|
| |
information and update all callers. No functional change.
llvm-svn: 214781
|