| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
* avoid generating POP {LR} in Thumb1 epilogues
* combine MOV LR, Rx + BX LR -> BX Rx in a peephole optimization pass
* combine POP {LR} + B + BX LR -> POP {PC} on v5T+
Test cases by Ana Pazos
Differential Revision: http://reviews.llvm.org/D15707
llvm-svn: 256523
|
| |
|
|
| |
llvm-svn: 256505
|
| |
|
|
|
|
| |
InstPrinters. NFC
llvm-svn: 256427
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Today, we always take into account the possibility that object files
produced by MC may be consumed by an incremental linker. This results
in us initialing fields which vary with time (TimeDateStamp) which harms
hermetic builds (e.g. verifying a self-host went well) and produces
sub-optimal code because we cannot assume anything about the relative
position of functions within a section (call sites can get redirected
through incremental linker thunks).
Let's provide an MCTargetOption which controls this behavior so that we
can disable this functionality if we know a-priori that the build will
not rely on /incremental.
llvm-svn: 256203
|
| |
|
|
|
|
|
|
|
| |
instructions.
As noted in PR24563.
rdar://problem/23963293
llvm-svn: 256183
|
| |
|
|
| |
llvm-svn: 256173
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Thumb2
Summary:
r250697 fixed the mapping for ARM mode. We have to do the same for Thumb2 otherwise the same llvm.arm.ssat() will generate different saturating amount for ARM and Thumb.
r250697: http://reviews.llvm.org/rL250697
Reviewers: rmaprath
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D15653
llvm-svn: 256115
|
| |
|
|
|
|
| |
This reverts commit r255762.
llvm-svn: 255806
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
ARMv8.2-A adds 16-bit floating point versions of all existing SIMD
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
Note that VFP without SIMD is not a valid combination for any version of
ARMv8-A, but I have ensured that these instructions all depend on both
FeatureNEON and FeatureFullFP16 for consistency.
Differential Revision: http://reviews.llvm.org/D15039
llvm-svn: 255764
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ARMv8.2-A adds 16-bit floating point versions of all existing VFP
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
The assembly for these instructions uses S registers (AArch32 does not
have H registers), but the instructions have ".f16" type specifiers
rather than ".f32" or ".f64". The top 16 bits of each source register
are ignored, and the top 16 bits of the destination register are set to
zero.
These instructions are mostly the same as the 32- and 64-bit versions,
but they use coprocessor 9 rather than 10 and 11.
Two new instructions, VMOVX and VINS, have been added to allow packing
and extracting two 16-bit floats stored in the top and bottom halves of
an S register.
New fixup kinds have been added for the PC-relative load and store
instructions, but no ELF relocations have been added as they have a
range of 512 bytes.
Differential Revision: http://reviews.llvm.org/D15038
llvm-svn: 255762
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This patch adds some missing calls to MBB::normalizeSuccProbs() in several
locations where it should be called. Those places are found by checking if the
sum of successors' probabilities is approximate one in MachineBlockPlacement
pass with some instrumented code (not in this patch).
Differential revision: http://reviews.llvm.org/D15259
llvm-svn: 255455
|
| |
|
|
|
|
|
| |
EABI attributes should only be emitted on EABI targets. This prevents the
emission of the optimization goals EABI attribute on Windows ARM.
llvm-svn: 255448
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After much discussion, ending here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151123/315620.html
it has been decided that, instead of having the vectorizer directly generate
special absdiff and horizontal-add intrinsics, we'll recognize the relevant
reduction patterns during CodeGen. Accordingly, these intrinsics are not needed
(the operations they represent can be pattern matched, as is already done in
some backends). Thus, we're backing these out in favor of the current
development work.
r248483 - Codegen: Fix llvm.*absdiff semantic.
r242546 - [ARM] Use [SU]ABSDIFF nodes instead of intrinsics for VABD/VABA
r242545 - [AArch64] Use [SU]ABSDIFF nodes instead of intrinsics for ABD/ABA
r242409 - [Codegen] Add intrinsics 'absdiff' and corresponding SDNodes for absolute difference operation
llvm-svn: 255387
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
computeRegisterLiveness() was broken in that it reported dead for a
register even if a subregister was alive. I assume this was because the
results of analayzePhysRegs() are hard to understand with respect to
subregisters.
This commit: Changes the results of analyzePhysRegs (=struct
PhysRegInfo) to be clearly understandable, also renames the fields to
avoid silent breakage of third-party code (and improve the grammar).
Fix all (two) users of computeRegisterLiveness() in llvm: By reenabling
it and removing workarounds for the bug.
This fixes http://llvm.org/PR24535 and http://llvm.org/PR25033
Differential Revision: http://reviews.llvm.org/D15320
llvm-svn: 255362
|
| |
|
|
|
|
|
|
|
|
| |
We mutated the DAG, which invalidated the node we were trying to use
as a base register. Sometimes we got away with it, but other times the
node really did get deleted before it was finished with.
Should fix PR25733
llvm-svn: 255120
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Otherwise, we think that most types that look like they'd fit in a
legal vector type are legal (so, basically, *any* vector type with a
size between 33 and 128 bits, I think, since we use pow2 alignment;
e.g., v2i25, v3f32, ...).
DataLayout::getTypeAllocSize rounds up based on alignment.
When checking for target intrinsic legality, that's not what we want:
if rounding makes a difference, the type isn't legal, and the
target intrinsics shouldn't be used, as they are always assumed legal.
One could make the argument that alloc size is ultimately the most
relevant here, since we're dealing with LD/ST intrinsics. That's only
true if we did legalize them though; that's a problem for another day.
Use DataLayout::getTypeSizeInBits instead of getTypeAllocSizeInBits.
Type::getSizeInBits can't be used because that'd gratuitously break
pointer vector support.
Some of these uses are currently fine, because we only hit them when
the type is already known legal (e.g., r114454). Update them for
consistency. It's faster to avoid the rounding anyway!
llvm-svn: 255089
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Before ARMv5T, Thumb1 code could not pop PC, as described at D14357 and D14986;
so we need the special fixup in the epilogue.
Reviewers: jroelofs, qcolombet
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D15126
llvm-svn: 255047
|
| |
|
|
|
|
|
| |
AND/BIC instructions do accept SP/PC, so the register class should be
more generic (rGPR -> GPR) to cope with that case. Adding more tests.
llvm-svn: 255034
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
ARM ARM.
Summary: This reverts r254234, and adds a simple fix for the annoying case of use-after-free.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D15236
llvm-svn: 254912
|
| |
|
|
|
|
| |
Additionally correct the Cortex-R7 definition to allow the FP16 feature.
llvm-svn: 254900
|
| |
|
|
|
|
| |
physical register arrays already use this typedef.
llvm-svn: 254843
|
| |
|
|
|
|
|
|
|
|
|
| |
with its source instead of forcing the values on GPRs.
This improves the lowering of vector code when such bitcasts happen in the
middle of vector computations.
rdar://problem/23691584
llvm-svn: 254684
|
| |
|
|
|
|
|
|
| |
The ARM ARM is clear that 128-bit loads are only guaranteed to have been atomic
if there has been a corresponding successful stxp. It's less clear for AArch32, so
I'm leaving that alone for now.
llvm-svn: 254524
|
| |
|
|
|
|
| |
Adds support for the new Cortex-A35 ARMv8-A core.
llvm-svn: 254503
|
| |
|
|
|
|
|
|
| |
The values in this field are compared against getAvailableFeatures()
which returns an uint64_t. This was causing problems in an internal
branch.
llvm-svn: 254462
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This had been broken for a very long time, but nobody noticed until
D14357 enabled shrink-wrapping by default.
Reviewers: jroelofs, qcolombet
Subscribers: tyomitch, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14986
llvm-svn: 254444
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Add ARMv8.2-A to TargetParser, so that it can be used by the clang
command-line options and the .arch directive.
Most testing of this will be done in clang, checking that the
command-line options that this enables work.
Differential Revision: http://reviews.llvm.org/D15037
llvm-svn: 254400
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds subtarget features for ARMv8.2-A, which builds on (and
requires the features from) ARMv8.1-A. Most assembler-visible features
of ARMv8.2-A are system instructions, and are all required parts of the
architecture, so just depend on the HasV8_2aOps subtarget feature.
There is also one large, optional feature, which adds 16-bit floating
point versions of all existing floating-point instructions (VFP and
SIMD), this is represented by the FeatureFullFP16 subtarget feature.
Differential Revision: http://reviews.llvm.org/D15036
llvm-svn: 254399
|
| |
|
|
|
|
| |
size that I would have otherwise cconverted to array_lengthof. NFC
llvm-svn: 254381
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
interfaces, and update all uses of old interfaces.
(This is the second attempt to submit this patch. The first caused two assertion
failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254377
|
| |
|
|
|
|
|
|
|
|
| |
probability-based interfaces, and update all uses of old interfaces."
and the follow-up r254356: "Fix a bug in MachineBlockPlacement that may cause assertion failure during BranchProbability construction."
Asserts were firing in Chromium builds. See PR25687.
llvm-svn: 254366
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
interfaces, and update all uses of old interfaces.
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254348
|
| |
|
|
|
|
| |
Fix the epilogue emission to account for that.
llvm-svn: 254325
|
| |
|
|
|
|
|
|
|
| |
in the ARM ARM."
This reverts commit r254201 and r254202, as it broke test-suite,
self-hosting and sanitizer tests on ARM buildbots.
llvm-svn: 254234
|
| |
|
|
| |
llvm-svn: 254202
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ARM ARM.
Summary:
Since this build attribute corresponds to a whole module, and
different functions in a module may differ in the optimizations
enabled for them, this attribute is emitted after all functions,
and only in the case that the optimization goals for all
functions match.
Reviewers: logan, hans
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D14934
llvm-svn: 254201
|
| |
|
|
|
|
|
|
|
| |
Building on r253865 the crash is not limited to signed overflows.
Disable custom handling of unsigned 32-bit and 64-bit integer divide.
Add test cases for both 32-bit and 64-bit unsigned integer overflow.
llvm-svn: 254158
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Many target lowerings copy-paste the code to test SDValues for known constants.
This code can instead be shared in SelectionDAG.cpp, and reused in the targets.
Reviewers: MatzeB, andreadb, tstellarAMD
Subscribers: arsenm, jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D14945
llvm-svn: 254085
|
| |
|
|
|
|
|
| |
Disable custom handling of signed 32-bit and 64-bit integer divide.
Add test cases for both 32-bit and 64-bit integer overflow crashes.
llvm-svn: 253865
|
| |
|
|
| |
llvm-svn: 253757
|
| |
|
|
| |
llvm-svn: 253737
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This follows D14577 to treat ARMv6-J as an alias for ARMv6,
instead of an architecture in its own right.
The functional change is that the default CPU when targeting ARMv6-J
changes from arm1136j-s to arm1136jf-s, which is currently used as
the default CPU for ARMv6; both are, in fact, ARMv6-J CPUs.
The J-bit (Jazelle support) is irrelevant to LLVM, and it doesn't
affect code generation, attributes, optimizations, or anything else,
apart from selecting the default CPU.
Reviewers: rengolin, logan, compnerd
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14755
llvm-svn: 253675
|
| |
|
|
|
|
|
|
|
|
| |
This reverts commit r253511.
This likely broke the bots in
http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202
http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787
llvm-svn: 253543
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
|
| |
|
|
|
|
|
|
|
|
|
|
| |
It turns out we decide whether to use SjLj exceptions or some alternative in
two separate places in the backend, and they disagreed with each other. This
led to inconsistent code and is generally a terrible idea.
So make them consistent and add an assert that they *do* match (unfortunately
MCAsmInfo isn't available in opt, so it can't be used to initialise the CodeGen
version directly).
llvm-svn: 253502
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a section is rw, it is irrelevant if the dynamic linker will write to
it or not.
It looks like llvm implemented this because gcc was doing it. It looks
like gcc implemented this in the hope that it would put all the
relocated items close together and speed up the dynamic linker.
There are two problem with this:
* It doesn't work. Both bfd and gold will map .data.rel to .data and
concatenate the input sections in the order they are seen.
* If we want a feature like that, it can be implemented directly in the
linker since it knowns where the dynamic relocations are.
llvm-svn: 253436
|
| |
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D14357
rdar://problem/21942589
llvm-svn: 253411
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The underlying issues surrounding codegen for 32-bit vselects have been resolved. The pessimistic costs for 64-bit vselects remain due to the bad
scalarization that is still happening there.
I tested this on A57 in T32, A32 and A64 modes. I saw no regressions, and some improvements.
From my benchmarks, I saw these improvements in A57 (T32)
spec.cpu2000.ref.177_mesa 5.95%
lnt.SingleSource/Benchmarks/Shootout/strcat 12.93%
lnt.MultiSource/Benchmarks/MiBench/telecomm-CRC32/telecomm-CRC32 11.89%
I also measured A57 A32, A53 T32 and A9 T32 and found no performance regressions. I see much bigger wins in third-party benchmarks with this change
Differential Revision: http://reviews.llvm.org/D14743
llvm-svn: 253349
|
| |
|
|
| |
llvm-svn: 253335
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D14664
llvm-svn: 253334
|