| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
sed -Ei 's/[[:space:]]+$//' include/**/*.{def,h,td} lib/**/*.{cpp,h}
llvm-svn: 338293
|
|
|
|
|
|
|
|
|
| |
When the condition code for an IT instruction is "AL" we get strange "15"
predicates on subsequent instructions. These are dealt with for most
instructions by treating them as "ARMCC::AL", but VFP takes a different path
which didn't have this code.
llvm-svn: 335594
|
|
|
|
|
|
|
|
|
|
|
| |
IT instructions are allowed to have the 'AL' predicate, but it must never
result in an 'NV' predicated instruction. Essentially this means that all
branches must be 't' rather than 'e' if the predicate is 'AL'.
This patch adds a diagnostic for this during assembly (error because parsing
hits an assertion if allowed to continue) and an annotation during disassembly.
llvm-svn: 335593
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch handling:
Enable parsing of raw encodings of system registers .
Allows UNPREDICTABLE sysregs to be decoded to a raw number in the same way that disasslib does, rather than llvm crashing.
Disassemble msr/mrs with unpredictable sysregs as SoftFail.
Fix regression due to SoftFailing some encodings.
Patch by Chris Ryder
Differential revision:https://reviews.llvm.org/D43374
llvm-svn: 326803
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ARMDisassembler now depends on the banked register tables in ARMUtils, so the
LLVMBuild.txt needed updating to reflect this.
Original commit mesage:
[ARM] Fix disassembly of invalid banked register moves
When disassembling banked register move instructions, we don't have an
assembly syntax for the unallocated register numbers, so we have to
return Fail rather than SoftFail. Previously we were returning SoftFail,
then crashing in the InstPrinter as we have no way to represent these
encodings in an assembly string.
This also switches the decoder to use the table-generated list of banked
registers, removing the duplicated list of encodings.
Differential revision: https://reviews.llvm.org/D43066
llvm-svn: 324606
|
|
|
|
|
|
|
|
| |
The broken bot (clang-ppc64le-linux-multistage) is doign a shared-object build,
so I guess using lookupBankedRegByEncoding in the disassembler is a layering
violation?
llvm-svn: 324604
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When disassembling banked register move instructions, we don't have an
assembly syntax for the unallocated register numbers, so we have to
return Fail rather than SoftFail. Previously we were returning SoftFail,
then crashing in the InstPrinter as we have no way to represent these
encodings in an assembly string.
This also switches the decoder to use the table-generated list of banked
registers, removing the duplicated list of encodings.
Differential revision: https://reviews.llvm.org/D43066
llvm-svn: 324600
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the groundwork for Armv8.2-A FP16 code generation .
Clang passes and returns _Float16 values as floats, together with the required
bitconverts and truncs etc. to implement correct AAPCS behaviour, see D42318.
We will implement half-precision argument passing/returning lowering in the ARM
backend soon, but for now this means that this:
_Float16 sub(_Float16 a, _Float16 b) {
return a + b;
}
gets lowered to this:
define float @sub(float %a.coerce, float %b.coerce) {
entry:
%0 = bitcast float %a.coerce to i32
%tmp.0.extract.trunc = trunc i32 %0 to i16
%1 = bitcast i16 %tmp.0.extract.trunc to half
<SNIP>
%add = fadd half %1, %3
<SNIP>
}
When FullFP16 is *not* supported, we don't make f16 a legal type, and we get
legalization for "free", i.e. nothing changes and everything works as before.
And also f16 argument passing/returning is handled.
When FullFP16 is supported, we do make f16 a legal type, and have 2 places that
we need to patch up: f16 argument passing and returning, which involves minor
tweaks to avoid unnecessary code generation for some bitcasts.
As a "demonstrator" that this works for the different FP16, FullFP16, softfp
modes, etc., I've added match rules to the VSUB instruction description showing
that we can codegen this instruction from IR, but more importantly, also to
some conversion instructions. These conversions were causing issue before in
the FP16 and FullFP16 cases.
I've also added match rules to the VLDRH and VSTRH desriptions, so that we can
actually compile the entire half-precision sub code example above. This showed
that these loads and stores had the wrong addressing mode specified: AddrMode5
instead of AddrMode5FP16, which turned out not be implemented at all, so that
has also been added.
This is the minimal patch that shows all the different moving parts. In patch
2/3 I will add some efficient lowering of bitcasts, and in 2/3 I will add the
remaining Armv8.2-A FP16 instruction descriptions.
Thanks to Sam Parker and Oliver Stannard for their help and reviews!
Differential Revision: https://reviews.llvm.org/D38315
llvm-svn: 323512
|
|
|
|
| |
llvm-svn: 321114
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D38347
llvm-svn: 316085
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
New instructions are added to AArch32 and AArch64 to aid
floating-point multiplication and addition of complex numbers, where
the complex numbers are packed in a vector register as a pair of
elements. The Imaginary part of the number is placed in the more
significant element, and the Real part of the number is placed in the
less significant element.
This patch adds assembler for the ARM target.
Differential Revision: https://reviews.llvm.org/D36789
llvm-svn: 314511
|
|
|
|
|
|
|
| |
Reviewed by: t.p.northover
Differential Revision: https://reviews.llvm.org/D36306
llvm-svn: 313979
|
|
|
|
|
|
| |
warnings; other minor fixes (NFC).
llvm-svn: 313823
|
|
|
|
|
|
|
|
|
| |
Commit r310480 added the AArch64 ARMv8.2a dot product instructions;
this adds the AArch32 instructions.
Differential Revision: https://reviews.llvm.org/D36575
llvm-svn: 310701
|
|
|
|
|
|
|
|
| |
This reverts r310243. Only MVFR2 is actually restricted to v8 and it'll be a
little while before we can get a proper fix together. Better that we allow
incorrect code than reject correct in the meantime.
llvm-svn: 310384
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch addresses two issues with assembly and disassembly for VMRS/VMSR:
1.currently VMRS/VMSR instructions accessing fpsid, mvfr{0-2} and fpexc, are
accepted for non ARMv8-A targets.
2. all VMRS/VMSR instructions accept writing/reading to PC and SP, when only
ARMv7-A and ARMv8-A should be allowed to write/read to SP and none to PC.
This patch addresses those issues and adds tests for these cases.
Differential Revision: https://reviews.llvm.org/D36306
llvm-svn: 310243
|
|
|
|
|
|
| |
Differential revision: https://reviews.llvm.org/D34813
llvm-svn: 306687
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
|
|
|
|
|
|
|
|
|
| |
Loop over the ARM decode tables; this is a clean-up to reduce some code
duplication.
Differential Revision: https://reviews.llvm.org/D30814
llvm-svn: 297608
|
|
|
|
|
|
| |
minor fixes (NFC).
llvm-svn: 293348
|
|
|
|
|
|
|
|
| |
This avoids "static initialization order fiasco"
Differential Revision: https://reviews.llvm.org/D25412
llvm-svn: 283702
|
|
|
|
|
|
| |
Follow up to r278902. I had missed "fall through", with a space.
llvm-svn: 278970
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reapplying patch as it was reverted when it was first
committed because of an assertion failure when the
mrrc2 intrinsic was called in ARM mode. The failure
was happening because the instruction was being built
in ARMISelDAGToDAG.cpp and the tablegen description for
mrrc2 instruction doesn't allow you to use a predicate.
The ARM architecture manuals do say that mrrc2 in ARM
mode can be predicated with AL in assembly but this has
no effect on the encoding of the instruction as the top
4 bits will always be 1111 not 1110 which is the encoding
for the condition AL.
Differential Revision: http://reviews.llvm.org/D21408
llvm-svn: 272982
|
|
|
|
|
|
| |
failure when running the test CodeGen/ARM/intrinsics-coprocessor.ll
llvm-svn: 272791
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D21178
llvm-svn: 272778
|
|
|
|
|
|
|
| |
to go in as soon as llvm patch has gone in because
tests will start breaking in Clang.
llvm-svn: 272546
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
MRRC/MRRC2 instruction writes to two registers. The
intrinsic definition returns a single uint64_t to
represent the write, this is a compact way of
representing a write to two 32 bit registers,
the alternative might have been two return a
struct of 2 uint32_t's but this isn't as nice.
Differential Revision:
llvm-svn: 272544
|
|
|
|
|
|
|
|
|
|
| |
new instruction to ARM and AArch64 targets and several system registers.
Patch by: Roger Ferrer Ibanez and Oliver Stannard
Differential Revision: http://reviews.llvm.org/D20282
llvm-svn: 271670
|
|
|
|
|
|
| |
No functional change, just moving code around.
llvm-svn: 258818
|
|
|
|
|
|
|
|
| |
This patch was originally committed as r257884, but was reverted due to windows
failures. The cause of these failures has been fixed under r258677, hence
re-committing the original patch.
llvm-svn: 258682
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was originally committed as r255762, but reverted as it broke windows
bots. Re-commitiing the exact same patch, as the underlying cause was fixed by
r258677.
ARMv8.2-A adds 16-bit floating point versions of all existing VFP
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
The assembly for these instructions uses S registers (AArch32 does not
have H registers), but the instructions have ".f16" type specifiers
rather than ".f32" or ".f64". The top 16 bits of each source register
are ignored, and the top 16 bits of the destination register are set to
zero.
These instructions are mostly the same as the 32- and 64-bit versions,
but they use coprocessor 9 rather than 10 and 11.
Two new instructions, VMOVX and VINS, have been added to allow packing
and extracting two 16-bit floats stored in the top and bottom halves of
an S register.
New fixup kinds have been added for the PC-relative load and store
instructions, but no ELF relocations have been added as they have a
range of 512 bytes.
Differential Revision: http://reviews.llvm.org/D15038
llvm-svn: 258678
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
# The first commit's message is:
Revert "[ARM] Add DSP build attribute and extension targeting"
This reverts commit b11cc50c0b4a7c8cdb628abc50b7dc226ff583dc.
# This is the 2nd commit message:
Revert "[ARM] Add new system registers to ARMv8-M Baseline/Mainline"
This reverts commit 837d08454e3e5beb8581951ac26b22fa07df3cd5.
llvm-svn: 257916
|
|
|
|
| |
llvm-svn: 257884
|
|
|
|
|
|
| |
This reverts commit r255762.
llvm-svn: 255806
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ARMv8.2-A adds 16-bit floating point versions of all existing SIMD
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
Note that VFP without SIMD is not a valid combination for any version of
ARMv8-A, but I have ensured that these instructions all depend on both
FeatureNEON and FeatureFullFP16 for consistency.
Differential Revision: http://reviews.llvm.org/D15039
llvm-svn: 255764
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ARMv8.2-A adds 16-bit floating point versions of all existing VFP
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
The assembly for these instructions uses S registers (AArch32 does not
have H registers), but the instructions have ".f16" type specifiers
rather than ".f32" or ".f64". The top 16 bits of each source register
are ignored, and the top 16 bits of the destination register are set to
zero.
These instructions are mostly the same as the 32- and 64-bit versions,
but they use coprocessor 9 rather than 10 and 11.
Two new instructions, VMOVX and VINS, have been added to allow packing
and extracting two 16-bit floats stored in the top and bottom halves of
an S register.
New fixup kinds have been added for the PC-relative load and store
instructions, but no ELF relocations have been added as they have a
range of 512 bytes.
Differential Revision: http://reviews.llvm.org/D15038
llvm-svn: 255762
|
|
|
|
| |
llvm-svn: 253737
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch handles assembly and disassembly, but not codegen, as of yet.
Additionally, it fixes a bug whereby SP and PC as shifted-reg operands
were treated as predictable in ARMv7 Thumb; and it enables the tests
for invalid and unpredictable instructions to run on both ARMv7 and ARMv8.
Reviewers: jmolloy, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D14141
llvm-svn: 251516
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, the availability of DSP instructions (ACLE 6.4.7) is handled in a
hand-rolled tricky condition block in tools/clang/lib/Basic/Targets.cpp, with
a FIXME: attached.
This patch changes the handling of +t2dsp to be in line with other
architecture extensions.
Following a revert of r248152 and new review comments, this patch also includes
renaming FeatureDSPThumb2 -> FeatureDSP, hasThumb2DSP() -> hasDSP(), etc.
The spelling of "t2dsp" is preserved, pending a further investigation of its
possible external usage.
Differential Revision: http://reviews.llvm.org/D12937
llvm-svn: 248519
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
MI.clear() within MCD::OPC_Decode case and inside of translateInstruction() for the X86 target. Remove now unnecessary MI.clear() from ARMDisassembler.
Summary: Explicitly clear the MI operand list when getInstruction() is called.
Reviewers: hfinkel, t.p.northover, hvarga, kparzysz, jyknight, qcolombet, uweigand
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11665
llvm-svn: 244557
|
|
|
|
|
|
| |
Apparently, the style needs to be agreed upon first.
llvm-svn: 240390
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first several times this was committed (e.g. r229831, r233055), it caused several buildbot failures.
Apparently the reason for most failures was both clang and gcc's inability to deal with large numbers (> 10K) of bitset constructor calls in tablegen-generated initializers of instruction info tables.
This should now be fixed.
llvm-svn: 238192
|
|
|
|
|
|
| |
MCOperand::Create*() methods renamed to MCOperand::create*().
llvm-svn: 237275
|
|
|
|
|
|
|
| |
The buildbots are still not satisfied.
MIPS and ARM are failing (even though at least MIPS was expected to pass).
llvm-svn: 237245
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first two times this was committed (r229831, r233055), it caused several buildbot failures.
At least some of the ARM and MIPS ones were due to gcc/binutils issues, and should now be fixed.
llvm-svn: 237234
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: jmolloy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8504
llvm-svn: 235087
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
|
|
|
|
|
|
|
|
| |
This reverts commit r233055.
It still causes buildbot failures (gcc running out of memory on several platforms, and a self-host failure on arm), although less than the previous time.
llvm-svn: 233068
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first time this was committed (r229831), it caused several buildbot failures.
At least some of the ARM ones were due to gcc/binutils issues, and should now be fixed.
Differential Revision: http://reviews.llvm.org/D8542
llvm-svn: 233055
|