| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Two functional changes have been made here:
- Now search up from any add instruction to find the chains of
operations that we may turn into a smlad. This allows the
generation of a smlad which doesn't accumulate into a phi.
- The search function has been corrected to stop it falsely searching
up through an invalid path.
The bulk of the changes have been making the Reduction struct a class
and making it more C++y with getters and setters.
Differential Revision: https://reviews.llvm.org/D61780
llvm-svn: 365740
|
| |
|
|
|
|
|
| |
Most of the code used for finding a 'narrow' sequence is not used,
so I've removed it and simplified the calls from the smlad matcher.
llvm-svn: 362104
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When deciding the safety of generating smlad, we checked for any
writes within the block that may alias with any of the loads that
need to be widened. This is overly conservative because it only
matters when there's a potential aliasing write to a location
accessed by a pair of loads.
Now we check for aliasing writes only once, during setup. If two
loads are found to have an aliasing write between them, we don't add
these loads to LoadPairs. This means that later during the transform,
we can safely widened a pair without worrying about aliasing.
However, to maintain correctness, we also need to change the way that
wide loads are inserted because the order is now important.
The MatchSMLAD method has also been changed, absorbing
MatchReductions and AddMACCandidate to hopefully improve readability.
Differential Revision: https://reviews.llvm.org/D6102
llvm-svn: 360567
|
| |
|
|
|
|
|
|
|
| |
Bail early when we don't have a preheader and also if the target is
big endian because it's written with only little endian in mind!
Differential Revision: https://reviews.llvm.org/D59368
llvm-svn: 356243
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When choosing whether a pair of loads can be combined into a single
wide load, we check that the load only has a sext user and that sext
also only has one user. But this can prevent the transformation in
the cases when parallel macs use the same loaded data multiple times.
To enable this, we need to fix up any other uses after creating the
wide load: generating a trunc and a shift + trunc pair to recreate
the narrow values. We also need to keep a record of which loads have
already been widened.
Differential Revision: https://reviews.llvm.org/D59215
llvm-svn: 356132
|
| |
|
|
|
|
|
|
|
| |
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Both zext and sext are currently allowed during the search for narrow
sequences and sexts operands are later added to the mac candidates.
But operands of muls are also added, without checking whether they're
sext or zext, which means we can generate a signed smlad when we
shouldn't.
Differential Revision: https://reviews.llvm.org/D54790
llvm-svn: 347542
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A few code movement things:
- AreSymmetrical is now a method of BinOpChain.
- Created a lambda in CreateParallelMACPairs to reduce loop nesting.
- A Reduction object now gets pasted in a couple of places instead,
including CreateParallelMACPairs so it doesn't need to return a
value.
I've also added RecordSequentialLoads, which is run before the
transformation begins, and caches the interesting loads. This can then
be queried later instead of cross checking many load values.
Differential Revision: https://reviews.llvm.org/D54254
llvm-svn: 346479
|
| |
|
|
|
|
|
| |
Still causing failures on the polly-aosp buildbot; I'll follow up
with a reduced testcase.
llvm-svn: 344752
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously reverted in rL343082.
Original commit message:
On failing to find sequences that can be converted into dual macs,
try to find sequential 16-bit loads that are used by muls which we
can then use smultb, smulbt, smultt with a wide load.
Differential Revision: https://reviews.llvm.org/D51983
llvm-svn: 344693
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Moving away from UnknownSize is part of the effort to migrate us to
LocationSizes (e.g. the cleanup promised in D44748).
This doesn't entirely remove all of the uses of UnknownSize; some uses
require tweaks to assume that UnknownSize isn't just some kind of int.
This patch is intended to just be a trivial replacement for all places
where LocationSize::unknown() will Just Work.
llvm-svn: 344186
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This broke Chromium's Android build (https://crbug.com/889390) and the
polly-aosp buildbot
(http://lab.llvm.org:8011/builders/aosp-O3-polly-before-vectorizer-unprofitable).
> Originally committed in rL342210 but was reverted in rL342260 because
> it was causing issues in vectorized code, because I had forgotten to
> ensure that we're operating on scalar values.
>
> Original commit message:
>
> On failing to find sequences that can be converted into dual macs,
> try to find sequential 16-bit loads that are used by muls which we
> can then use smultb, smulbt, smultt with a wide load.
>
> Differential Revision: https://reviews.llvm.org/D51983
llvm-svn: 343082
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Originally committed in rL342210 but was reverted in rL342260 because
it was causing issues in vectorized code, because I had forgotten to
ensure that we're operating on scalar values.
Original commit message:
On failing to find sequences that can be converted into dual macs,
try to find sequential 16-bit loads that are used by muls which we
can then use smultb, smulbt, smultt with a wide load.
Differential Revision: https://reviews.llvm.org/D51983
llvm-svn: 342870
|
| |
|
|
|
|
|
|
|
|
| |
It causes assertion failures while building Skia for Android in
Chromium:
https://ci.chromium.org/buildbot/chromium.clang/ToTAndroid/4550
Reduction forthcoming.
llvm-svn: 342260
|
| |
|
|
|
|
|
|
|
|
| |
On failing to find sequences that can be converted into dual macs,
try to find sequential 16-bit loads that are used by muls which we
can then use smultb, smulbt, smultt with a wide load.
Differential Revision: https://reviews.llvm.org/D51983
llvm-svn: 342210
|
| |
|
|
|
|
| |
Fixed typo which can cause segfault.
llvm-svn: 342040
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SMLAD and SMLALD instructions also come in the form of SMLADX and
SMLALDX which perform an exchange on their second operand. To support
this, more of the loads in the MAC candidates are compared for
sequential access and a boolean value has been added to BinOpChain.
AddMACCandiate has been refactored into a small pattern matching
state machine to reduce the amount of duplicated code, but also to
enable the matching to be more flexible. CreateParallelMACPairs now
iterates through all the candidates to find parallel ones.
Differential Revision: https://reviews.llvm.org/D51424
llvm-svn: 342033
|
| |
|
|
|
|
|
|
|
| |
Search from i64 reducing phis, as well as i32, to allow the
generation of smlald instructions.
Differential Revision: https://reviews.llvm.org/D51101
llvm-svn: 341941
|
| |
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D50511
llvm-svn: 339645
|
| |
|
|
| |
llvm-svn: 337714
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
OpChain has subclasses, so add a virtual destructor.
This fixes an issue when deleting subclasses of OpChain (see MatchSMLAD() specifically) in r337701.
Reviewers: javed.absar
Subscribers: llvm-commits, SjoerdMeijer, samparker
Differential Revision: https://reviews.llvm.org/D49681
llvm-svn: 337713
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparing to allow ARMParallelDSP pass to parallelise more than
smlads, I've restructed some elements:
- The ParallelMAC struct has been renamed to BinOpChain.
- The BinOpChain struct holds two value lists: LHS and RHS, as well
as inheriting from the OpChain base class.
- The OpChain struct holds all the values of the represented chain
and has had the memory locations functionality inserted into it.
- ParallelMACList becomes OpChainList and it now holds pointers
instead of objects.
Differential Revision: https://reviews.llvm.org/D49020
llvm-svn: 337701
|
| |
|
|
|
|
|
|
|
|
| |
This fixes an issue that we were not properly supporting multiple reduction
stmts in a loop, and not generating SMLADs for these cases. The alias analysis
checks were done too early, making it too conservative.
Differential revision: https://reviews.llvm.org/D49125
llvm-svn: 336795
|
| |
|
|
|
|
|
|
|
| |
Added statistics for the number of SMLAD instructions created, and
als renamed the pass name to -arm-parallel-dsp.
Differential Revision: https://reviews.llvm.org/D48971
llvm-svn: 336441
|
| |
|
|
|
|
|
|
|
| |
We were miscompiling i8 loads, so reject them as unsupported narrow operations
for now.
Differential Revision: https://reviews.llvm.org/D48944
llvm-svn: 336319
|
| |
|
|
| |
llvm-svn: 336223
|
| |
|
|
|
|
|
|
|
|
| |
With a view to support parallel operations that have their results
stored to memory, refactor the consecutive access helper out so it
could support stores instructions.
Differential Revision: https://reviews.llvm.org/D48872
llvm-svn: 336195
|
| |
|
|
|
|
| |
Fixes -Wpedantic warning.
llvm-svn: 335901
|
|
|
Armv6 introduced instructions to perform 32-bit SIMD operations. The purpose of
this pass is to do some straightforward IR pattern matching to create ACLE DSP
intrinsics, which map on these 32-bit SIMD operations.
Currently, only the SMLAD instruction gets recognised. This instruction
performs two multiplications with 16-bit operands, and stores the result in an
accumulator. We will follow this up with patches to recognise SMLAD in more
cases, and also to generate other DSP instructions (like e.g. SADD16).
Patch by: Sam Parker and Sjoerd Meijer
Differential Revision: https://reviews.llvm.org/D48128
llvm-svn: 335850
|