| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
| |
Avoids using a plain unsigned for registers throughoug codegen.
Doesn't attempt to change every register use, just something a little
more than the set needed to build after changing the return type of
MachineOperand::getReg().
llvm-svn: 364191
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is useful for allowing code to efficiently take an address
that can be later mapped onto debug info. Currently the hwasan
pass achieves this by taking the address of the current function:
http://llvm-cs.pcc.me.uk/lib/Transforms/Instrumentation/HWAddressSanitizer.cpp#921
but this costs two instructions (plus a GOT entry in PIC code) per function
with stack variables. This will allow the cost to be reduced to a single
instruction.
Differential Revision: https://reviews.llvm.org/D63471
llvm-svn: 364126
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To help produce better diagnostics for stack use-after-return, we'd like
to be able to determine the addresses of each HWASANified function's local
variables given a small amount of information recorded on entry to the
function. Currently we require all HWASANified functions to use frame pointers
and record (PC, FP) on function entry. This works better than recording SP
because FP cannot change during the function, unlike SP which can change
e.g. due to dynamic alloca.
However, most variables currently end up using SP-relative locations in their
debug info. This prevents us from recomputing the address of most variables
because the distance between SP and FP isn't recorded in the debug info. To
address this, make the AArch64 backend prefer FP-relative debug locations
when producing debug info for HWASANified functions.
Differential Revision: https://reviews.llvm.org/D63300
llvm-svn: 364117
|
|
|
|
|
|
|
|
|
|
|
|
| |
On Windows ARM64, intrinsic __debugbreak is compiled into brk #0xF000 which is
mapped to llvm.debugtrap in Clang. Instruction brk #F000 is the defined break
point instruction on ARM64 which is recognized by Windows debugger and
exception handling code, so llvm.debugtrap should map to it instead of
redirecting to llvm.trap (brk #1) as the default implementation.
Differential Revision: https://reviews.llvm.org/D63635
llvm-svn: 364115
|
|
|
|
|
|
|
|
|
|
| |
and G_BRJT ops.
With this we can now fully code generate jump tables, which is important for code size.
Differential Revision: https://reviews.llvm.org/D63223
llvm-svn: 364086
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We sometimes get poor code size because constants of types < 32b are legalized
as 32 bit G_CONSTANTs with a truncate to fit. This works but means that the
localizer can no longer sink them (although it's possible to extend it to do so).
On AArch64 however s8 and s16 constants can be selected in the same way as s32
constants, with a mov pseudo into a W register. If we make s8 and s16 constants
legal then we can avoid unnecessary truncates, they can be CSE'd, and the
localizer can sink them as normal.
There is a caveat: if the user of a smaller constant has to widen the sources,
we end up with an anyext of the smaller typed G_CONSTANT. This can cause
regressions because of the additional extend and missed pattern matching. To
remedy this, there's a new artifact combiner to generate the wider G_CONSTANT
if it's legal for the target.
Differential Revision: https://reviews.llvm.org/D63587
llvm-svn: 364075
|
|
|
|
|
|
|
|
|
| |
Turns out that we can save an instruction by folding the right shift into
the compare.
Differential Revision: https://reviews.llvm.org/D63568
llvm-svn: 363874
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
block.
Inter-block localization is the same as what currently happens, except now it
only runs on the entry block because that's where the problematic constants with
long live ranges come from.
The second phase is a new intra-block localization phase which attempts to
re-sink the already localized instructions further right before one of the
multiple uses.
One additional change is to also localize G_GLOBAL_VALUE as they're constants
too. However, on some targets like arm64 it takes multiple instructions to
materialize the value, so some additional heuristics with a TTI hook have been
introduced attempt to prevent code size regressions when localizing these.
Overall, these changes improve CTMark code size on arm64 by 1.2%.
Full code size results:
Program baseline new diff
------------------------------------------------------------------------------
test-suite...-typeset/consumer-typeset.test 1249984 1217216 -2.6%
test-suite...:: CTMark/ClamAV/clamscan.test 1264928 1232152 -2.6%
test-suite :: CTMark/SPASS/SPASS.test 1394092 1361316 -2.4%
test-suite...Mark/mafft/pairlocalalign.test 731320 714928 -2.2%
test-suite :: CTMark/lencod/lencod.test 1340592 1324200 -1.2%
test-suite :: CTMark/kimwitu++/kc.test 3853512 3820420 -0.9%
test-suite :: CTMark/Bullet/bullet.test 3406036 3389652 -0.5%
test-suite...ark/tramp3d-v4/tramp3d-v4.test 8017000 8016992 -0.0%
test-suite...TMark/7zip/7zip-benchmark.test 2856588 2856588 0.0%
test-suite...:: CTMark/sqlite3/sqlite3.test 765704 765704 0.0%
Geomean difference -1.2%
Differential Revision: https://reviews.llvm.org/D63303
llvm-svn: 363632
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Basically porting over the behaviour in AArch64ISelLowering to GISel. See
emitComparison for reference.
When we have something like this:
```
lhs = G_SUB 0, y
...
G_ICMP lhs, rhs
```
We can fold away the G_SUB and produce a cmn instead, given that we produce
the same value in NZCV.
Add a test showing that the transformation works, and also showing that we
don't perform the transformation when it's unsafe.
Also factor out the CSet emission into emitCSetForICMP.
Differential Revision: https://reviews.llvm.org/D63163
llvm-svn: 363596
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(PR42123)
As discussed on D62910, we need to check whether particular types of memory access are allowed, not just their alignment/address-space.
This NFC patch adds a MachineMemOperand::Flags argument to allowsMemoryAccess and allowsMisalignedMemoryAccesses, and wires up calls to pass the relevant flags to them.
If people are happy with this approach I can then update X86TargetLowering::allowsMisalignedMemoryAccesses to handle misaligned NT load/stores.
Differential Revision: https://reviews.llvm.org/D63075
llvm-svn: 363179
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Extern global merging is good for code-size. There's definitely potential for
performance too, but there's one regression in a benchmark that needs
investigating, so that's why we enable it only when we optimise for size for
now.
Patch by Ramakota Reddy and Sjoerd Meijer.
Differential Revision: https://reviews.llvm.org/D61947
llvm-svn: 363130
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts r362990 (git commit 374571301dc8e9bc9fdd1d70f86015de198673bd)
This was causing linker warnings on Darwin:
ld: warning: direct access in function 'llvm::initializeEvexToVexInstPassPass(llvm::PassRegistry&)'
from file '../../lib/libLLVMX86CodeGen.a(X86EvexToVex.cpp.o)' to global weak symbol
'void std::__1::__call_once_proxy<std::__1::tuple<void* (&)(llvm::PassRegistry&),
std::__1::reference_wrapper<llvm::PassRegistry>&&> >(void*)' from file '../../lib/libLLVMCore.a(Verifier.cpp.o)'
means the weak symbol cannot be overridden at runtime. This was likely caused by different translation
units being compiled with different visibility settings.
llvm-svn: 363028
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
llvm-svn: 362990
|
|
|
|
|
|
|
|
| |
A simple re-use of the immediate operand matcher and renderer functions.
rdar://43795178
llvm-svn: 362896
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch aims to reduce spilling and register moves by using the 3-address
versions of instructions per default instead of the 2-address equivalent
ones. It seems that both spilling and register moves are improved noticeably
generally.
Regalloc hints are passed to increase conversions to 2-address instructions
which are done in SystemZShortenInst.cpp (after regalloc).
Since the SystemZ reg/mem instructions are 2-address (dst and lhs regs are
the same), foldMemoryOperandImpl() can no longer trivially fold a spilled
source register since the reg/reg instruction is now 3-address. In order to
remedy this, new 3-address pseudo memory instructions are used to perform the
folding only when the dst and lhs virtual registers are known to be allocated
to the same physreg. In order to not let MachineCopyPropagation run and
change registers on these transformed instructions (making it 3-address), a
new target pass called SystemZPostRewrite.cpp is run just after
VirtRegRewriter, that immediately lowers the pseudo to a target instruction.
If it would have been possibe to insert a COPY instruction and change a
register operand (convert to 2-address) in foldMemoryOperandImpl() while
trusting that the caller (e.g. InlineSpiller) would update/repair the
involved LiveIntervals, the solution involving pseudo instructions would not
have been needed. This is perhaps a potential improvement (see Phabricator
post).
Common code changes:
* A new hook TargetPassConfig::addPostRewrite() is utilized to be able to run a
target pass immediately before MachineCopyPropagation.
* VirtRegMap is passed as an argument to foldMemoryOperand().
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D60888
llvm-svn: 362868
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch fixes a bug in the assembler that permitted a type suffix on
predicate registers when not expected. For instance, the following was
previously valid:
faddv h0, p0.q, z1.h
This bug was present in all SVE instructions containing predicates with
no type suffix and no predication form qualifier, i.e. /z or /m. The
latter instructions are already caught with an appropiate error message
by the assembler, e.g.:
.text
<stdin>:1:13: error: not expecting size suffix
cmpne p1.s, p0.b/z, z2.s, 0
^
A similar issue for SVE vector registers was fixed in:
https://reviews.llvm.org/D59636
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62942
llvm-svn: 362780
|
|
|
|
|
|
|
|
|
|
| |
Patch by Sander de Smalen (sdesmalen)
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62941
llvm-svn: 362779
|
|
|
|
|
|
|
|
|
|
|
| |
This patch is a follow up for D62018 to add lrint/llrint
support for float16.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62863
llvm-svn: 362700
|
|
|
|
|
|
|
|
|
|
|
| |
This patch is a follow up for D61391 to add lround/llround
support for float16.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62861
llvm-svn: 362698
|
|
|
|
|
|
|
|
|
|
|
| |
We already get support for G_ZEXTLOAD to s32 from the importer, but it can't
deal with the SUBREG_TO_REG in the pattern. Tweaking the existing manual
selection code for G_LOAD to handle an additional SUBREG_TO_REG when dealing
with G_ZEXTLOAD isn't much work.
Also add tests to check the imported pattern selections to s32 work.
llvm-svn: 362681
|
|
|
|
|
|
|
|
| |
to go into r362666.
The changes weren't staged so ended up just re-commiting the unmodified reverted change.
llvm-svn: 362677
|
|
|
|
|
|
|
|
|
|
|
|
| |
G_SELECT is fp""
When looking through copies, make sure to not try to find the vreg def of a physreg.
Normally getVRegDef will return nullptr in this case, but if there happens to be
multiple defs then it will assert.
This fixes PR42129.
llvm-svn: 362666
|
|
|
|
|
|
|
|
| |
is fp"
This reverts commit r362435 as this triggers ICE, see PR42129 for details.
llvm-svn: 362662
|
|
|
|
|
|
|
|
| |
Although we had the support in the prelegalizer combiner to generate the
G_SEXTLOAD or G_ZEXTLOAD ops, the legalizer definitions for arm64 had them as
lowering back to separate ops.
llvm-svn: 362553
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Arm Architecture v8.5a introduces Branch Target Identification (BTI). When
enabled all indirect branches must target a bti instruction of the
appropriate form. As PLT sequences may sometimes be the target of an
indirect branch and PLT[0] always is, a static linker may need to generate
PLT sequences that contain "bti c" as the first instruction. In effect:
bti c
adrp x16, page offset to .got.plt
...
Instead of:
adrp x16, page offset to .got.plt
...
At present the PLT decoding assumes the adrp will always be the first
instruction. This patch adds support for a single "bti c" to prefix it. A
test binary has been uploaded with such a PLT sequence. A forthcoming LLD
patch will make heavy use of the PLT decoding code.
Differential Revision: https://reviews.llvm.org/D62598
llvm-svn: 362523
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of emitting all of the test stuff for a compare when it's only used by
a select, instead, just emit the compare + select. The select will use the
value of NZCV correctly, so we don't need to emit all of the test instructions
etc.
For now, only support fp selects which use G_FCMP. Also only support condition
codes which will only require one select to represent.
Also add a test.
Differential Revision: https://reviews.llvm.org/D62695
llvm-svn: 362446
|
|
|
|
|
|
|
|
|
|
|
| |
DAGCombiner was hitting a SimpleType assertion when trying to combine
a v3f32 before type legalization.
bugzilla: https://bugs.llvm.org/show_bug.cgi?id=41916
Differential Revision: https://reviews.llvm.org/D62734
llvm-svn: 362365
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CodeView has its own register map which is defined in cvconst.h. Missing this
mapping before saving register to CodeView causes debugger to show incorrect
value for all register based variables, like variables in register and local
variables addressed by register (stack pointer + offset).
This change added mapping between LLVM register and CodeView register so the
correct register number will be stored to CodeView/PDB, it aso fixed the
mapping from CodeView register number to register name based on current
CPUType but print PDB to yaml still assumes X86 CPU and needs to be fixed.
Differential Revision: https://reviews.llvm.org/D62608
llvm-svn: 362280
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch adds support for the following instructions:
* WHILEGE, WHILEGT, WHILEHS, WHILEHI, WHILEWR, WHILERW
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D62601
llvm-svn: 362215
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
A three sources variant of the TBL instruction is added to the existing
SVE instruction in SVE2. This is implemented with minor changes to the
existing TableGen class. TBX is a new instruction with its own
definition.
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D62600
llvm-svn: 362214
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch adds support for the following instructions:
* STNT1B, STNT1H, STNT1S, STNT1D
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D62599
llvm-svn: 362213
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62530
llvm-svn: 362073
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch adds support for the following instructions:
* LDNT1SB, LDNT1B, LDNT1SH, LDNT1H, LDNT1SW, LDNT1W, LDNT1D
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62528
llvm-svn: 362072
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch completes SVE2 support for:
SVE Floating Point Unary Operations - Predicated Group
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62526
llvm-svn: 362071
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D62518
llvm-svn: 362070
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch adds support for the following instructions:
* EOR3, BSL, BCAX, BSL1N, BSL2N, NBSL, XAR
Aliases for types .B/.H/.S for EOR3 and BCAX have been added, the
preferred disassembly is .D.
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62387
llvm-svn: 361936
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch adds support for the indexed and unpredicated vectors forms of the
FMLALB, FMLALT, FMLSLB and FMLSLT instructions.
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D62386
llvm-svn: 361935
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch adds support for the following instructions:
SVE2 floating-point pairwise operations:
* FADDP, FMAXNMP, FMINNMP, FMAXP, FMINP
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D62383
llvm-svn: 361933
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for selecting FCMPSri and FCMPDri when comparing against 0.0, and
factor out opcode selection for G_FCMP into its own function.
Add a test to show that we don't do this with other immediates.
Differential Revision: https://reviews.llvm.org/D62539
llvm-svn: 361888
|
|
|
|
|
|
|
|
|
|
|
| |
This patch optimizes ISD::LRINT and ISD::LLRINT to frintx plus
fcvtzs. It currently only handles the scalar version.
Reviewed By: SjoerdMeijer, mstorsjo
Differential Revision: https://reviews.llvm.org/D62018
llvm-svn: 361877
|
|
|
|
| |
llvm-svn: 361844
|
|
|
|
| |
llvm-svn: 361813
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch adds support for the following intructions:
SVE2 floating-point convert precision:
* FCVTXNT, FCVTNT, FCVTLT
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D62382
llvm-svn: 361801
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch adds support for the following instructions:
SVE2 crypto constructive binary operations:
* SM4EKEY, RAX1
SVE2 crypto destructive binary operations:
* AESE, AESD, SM4E
SVE2 crypto unary operations:
* AESMC, AESIMC
AESE, AESD, AESMC and AESIMC are enabled with +sve2-aes. SM4E and
SM4EKEY are enabled with +sve2-sm4. RAX1 is enabled with +sve2-sha3.
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62307
llvm-svn: 361797
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch adds support for the following instructions:
SVE2 histogram generation (segment):
* HISTSEG
SVE2 histogram generation (vector):
* HISTCNT
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D62306
llvm-svn: 361796
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch adds support for the following instructions:
SVE2 bitwise exclusive-or interleaved:
* EORBT, EORTB
SVE2 bitwise permute:
* BEXT, BDEP, BGRP
SVE2 bitwise shift left long:
* SSHLLB, SSHLLT, USHLLB, USHLLT
SVE2 integer add/subtract interleaved long:
* SADDLBT, SSUBLBT, SSUBLTB
BDEP, BEXT and BGRP are enabled with SVE2 feature +bitperm, all other
instructions in this group are enabled with +sve2.
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D62304
llvm-svn: 361795
|
|
|
|
|
|
|
|
|
|
| |
AArch64AsmBackend.cpp was not using any APIs from AArch64.h, and was
only including it for transitive dependencies. Doing so is problematic
from include-what-you-use perspective, but it is also a layering issue
(it creates a dependency cycle between the primary AArch64 target
library and the MCTargetDesc library).
llvm-svn: 361774
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In a few places in getInstrMapping, we check if use/def instructions for the
instruction we're mapping have floating point constraints.
We can improve this check and reduce the number of copies in GISel-compiled code
if we make a couple observations:
- For a def instruction, it only matters if the def instruction must always
output a value stored on a FPR
- For a use instruction, it only matters if the use instruction must always
only take in values stored in FPRs
This adds two new functions:
- onlyUsesFP
- onlyDefinesFP
Then we can use those when we're checking the uses/defs instead.
Without this patch, the load, unmerge, store, and select in the added test
would have unnecessary copies.
Differential Revision: https://reviews.llvm.org/D62426
llvm-svn: 361679
|
|
|
|
|
|
|
|
|
| |
Factor it out into a function, and replace places where we had the same check
with the new function.
Differential Revision: https://reviews.llvm.org/D62421
llvm-svn: 361677
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The fcsel and csel instructions differ in only the register banks they work on.
So, they're entirely interchangeable otherwise.
With this in mind, this does two things:
- Teach AArch64RegisterBankInfo to consider the inputs to G_SELECT as well as
the outputs.
- Teach it to choose the best register bank mapping based off the constraints
of the inputs and outputs.
The "best" in this case means the one that requires the smallest number of
copies to properly emit a fcsel/csel.
For example, if the inputs are all already going to be on FPRs, we should
emit a fcsel, even if the output is a GPR. This costs one copy to produce the
result, but saves us from copying the inputs into GPRs.
Also update the regbank-select.mir to check that we end up with the right
select instruction.
Differential Revision: https://reviews.llvm.org/D62267
llvm-svn: 361665
|