summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Passes
Commit message (Collapse)AuthorAgeFilesLines
...
* [attrs] Extract the pure inference of function attributes intoChandler Carruth2015-12-272-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | a standalone pass. There is no call graph or even interesting analysis for this part of function attributes -- it is literally inferring attributes based on the target library identification. As such, we can do it using a much simpler module pass that just walks the declarations. This can also happen much earlier in the pass pipeline which has benefits for any number of other passes. In the process, I've cleaned up one particular aspect of the logic which was necessary in order to separate the two passes cleanly. It now counts inferred attributes independently rather than just counting all the inferred attributes as one, and the counts are more clearly explained. The two test cases we had for this code path are both ... woefully inadequate and copies of each other. I've kept the superset test and updated it. We need more testing here, but I had to pick somewhere to stop fixing everything broken I saw here. Differential Revision: http://reviews.llvm.org/D15676 llvm-svn: 256466
* [attrs] Split off the forced attributes utility into its own pass thatChandler Carruth2015-12-272-2/+4
| | | | | | | | | | | | | | | is (by default) run much earlier than FuncitonAttrs proper. This allows forcing optnone or other widely impactful attributes. It is also a bit simpler as the force attribute behavior needs no specific iteration order. I've added the pass into the default module pass pipeline and LTO pass pipeline which mirrors where function attrs itself was being run. Differential Revision: http://reviews.llvm.org/D15668 llvm-svn: 256465
* [PM] Port StripDeadPrototypes to the new pass managerJustin Bogner2015-10-302-0/+2
| | | | | | | This is a really straightforward port. Also adds a test for the pass, since it only seemed to be tested tangentially before. llvm-svn: 251726
* [PM] Port ADCE to the new pass managerJustin Bogner2015-10-302-0/+2
| | | | llvm-svn: 251725
* [PM] Port SROA to the new pass manager.Chandler Carruth2015-09-122-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In some ways this is a very boring port to the new pass manager as there are no interesting analyses or dependencies or other oddities. However, this does introduce the first good example of a transformation pass with non-trivial state porting to the new pass manager. I've tried to carve out patterns here to replicate elsewhere, and would appreciate comments on whether folks like these patterns: - A common need in the new pass manager is to effectively lift the pass class and some of its state into a public header file. Prior to this, LLVM used anonymous namespaces to provide "module private" types and utilities, but that doesn't scale to cases where a public header file is needed and the new pass manager will exacerbate that. The pattern I've adopted here is to use the namespace-cased-name of the core pass (what would be a module if we had them) as a module-private namespace. Then utility and other code can be declared and defined in this namespace. At some point in the future, we could even have (conditionally compiled) code that used modules features when available to do the same basic thing. - I've split the actual pass run method in two in order to expose a private method usable by the old pass manager to wrap the new class with a minimum of duplicated code. I actually looked at a bunch of ways to automate or generate these, but they are all quite terrible IMO. The fundamental need is to extract the set of analyses which need to cross this interface boundary, and that will end up being too unpredictable to effectively encapsulate IMO. This is also a relatively small amount of boiler plate that will live a relatively short time, so I'm not too worried about the fact that it is boiler plate. The rest of the patch is totally boring but results in a massive diff (sorry). It just moves code around and removes or adds qualifiers to reflect the new name and nesting structure. Differential Revision: http://reviews.llvm.org/D12773 llvm-svn: 247501
* [PM/AA] Remove the last relics of the separate IPA library from LLVM,Chandler Carruth2015-08-181-1/+1
| | | | | | | | | | | | | | | | | | | | | folding the code into the main Analysis library. There already wasn't much of a distinction between Analysis and IPA. A number of the passes in Analysis are actually IPA passes, and there doesn't seem to be any advantage to separating them. Moreover, it makes it hard to have interactions between analyses that are both local and interprocedural. In trying to make the Alias Analysis infrastructure work with the new pass manager, it becomes particularly awkward to navigate this split. I've tried to find all the places where we referenced this, but I may have missed some. I have also adjusted the C API to continue to be equivalently functional after this change. Differential Revision: http://reviews.llvm.org/D12075 llvm-svn: 245318
* [PM] Port ScalarEvolution to the new pass manager.Chandler Carruth2015-08-172-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This change makes ScalarEvolution a stand-alone object and just produces one from a pass as needed. Making this work well requires making the object movable, using references instead of overwritten pointers in a number of places, and other refactorings. I've also wired it up to the new pass manager and added a RUN line to a test to exercise it under the new pass manager. This includes basic printing support much like with other analyses. But there is a big and somewhat scary change here. Prior to this patch ScalarEvolution was never *actually* invalidated!!! Re-running the pass just re-wired up the various other analyses and didn't remove any of the existing entries in the SCEV caches or clear out anything at all. This might seem OK as everything in SCEV that can uses ValueHandles to track updates to the values that serve as SCEV keys. However, this still means that as we ran SCEV over each function in the module, we kept accumulating more and more SCEVs into the cache. At the end, we would have a SCEV cache with every value that we ever needed a SCEV for in the entire module!!! Yowzers. The releaseMemory routine would dump all of this, but that isn't realy called during normal runs of the pipeline as far as I can see. To make matters worse, there *is* actually a key that we don't update with value handles -- there is a map keyed off of Loop*s. Because LoopInfo *does* release its memory from run to run, it is entirely possible to run SCEV over one function, then over another function, and then lookup a Loop* from the second function but find an entry inserted for the first function! Ouch. To make matters still worse, there are plenty of updates that *don't* trip a value handle. It seems incredibly unlikely that today GVN or another pass that invalidates SCEV can update values in *just* such a way that a subsequent run of SCEV will incorrectly find lookups in a cache, but it is theoretically possible and would be a nightmare to debug. With this refactoring, I've fixed all this by actually destroying and recreating the ScalarEvolution object from run to run. Technically, this could increase the amount of malloc traffic we see, but then again it is also technically correct. ;] I don't actually think we're suffering from tons of malloc traffic from SCEV because if we were, the fact that we never clear the memory would seem more likely to have come up as an actual problem before now. So, I've made the simple fix here. If in fact there are serious issues with too much allocation and deallocation, I can work on a clever fix that preserves the allocations (while clearing the data) between each run, but I'd prefer to do that kind of optimization with a test case / benchmark that shows why we need such cleverness (and that can test that we actually make it faster). It's possible that this will make some things faster by making the SCEV caches have higher locality (due to being significantly smaller) so until there is a clear benchmark, I think the simple change is best. Differential Revision: http://reviews.llvm.org/D12063 llvm-svn: 245193
* [PM] Fixup for r231556 where I missed a dependency on intrinsicsChandler Carruth2015-03-071-0/+2
| | | | | | generation. llvm-svn: 231558
* [PM] Create a separate library for high-level pass management code.Chandler Carruth2015-03-075-0/+531
This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
OpenPOWER on IntegriCloud