| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
template parameters.
In ValueMapper we create new operands for MDNodes and
rely on MDNode::replaceWithUniqued to create a new MDNode
with the specified operands. However this doesn't always
actually happen correctly for DISubprograms because when we
uniquify the new node, we only odr-compare it with existing nodes
(MDNodeSubsetEqualImpl<DISubprogram>::isDeclarationOfODRMember). Although
the TemplateParameters field can refer to a distinct DICompileUnit via
DITemplateTypeParameter::type -> DICompositeType::scope -> DISubprogram::unit,
it is not currently included in the odr comparison. As a result, we can end
up getting our original DISubprogram back, which means we will have a cloned
module referring to the DICompileUnit in the original module, which causes
a verification error.
The fix I implemented was to consider TemplateParameters to be one of the
odr-equal properties. But I'm a little uncomfortable with this. In general it
seems unsound to rely on distinct MDNodes never being reachable from nodes
which we only check odr-equality of. My only long term suggestion would be
to separate odr-uniquing from full uniquing.
Differential Revision: https://reviews.llvm.org/D29240
llvm-svn: 294240
|
|
|
|
| |
llvm-svn: 293866
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: LTO requires the debug-info-for-profiling to be a function attribute.
Reviewers: echristo, mehdi_amini, dblaikie, probinson, aprantl
Reviewed By: mehdi_amini, dblaikie, aprantl
Subscribers: aprantl, probinson, ahatanak, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D29203
llvm-svn: 293833
|
|
|
|
|
|
| |
This part of the C API is still used in language bindings.
llvm-svn: 293460
|
|
|
|
|
|
|
|
| |
While this probably should be considered a dump debugger utility, the C
API currently has no other ways to print a module to stderr for error
reporting purposes, so keep it even in release builds.
llvm-svn: 293436
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch by Michele Scandale
(with a small tweak to 'CHECK-NOT' the last DILocation in the test)
Subscribers: bogner, llvm-commits
Differential Revision: https://reviews.llvm.org/D27980
llvm-svn: 293377
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit introduces a set of experimental intrinsics intended to prevent
optimizations that make assumptions about the rounding mode and floating point
exception behavior. These intrinsics will later be extended to specify
flush-to-zero behavior. More work is also required to model instruction
dependencies in machine code and to generate these instructions from clang
(when required by pragmas and/or command line options that are not currently
supported).
Differential Revision: https://reviews.llvm.org/D27028
llvm-svn: 293226
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows MIR passes to emit optimization remarks with the same level
of functionality that is available to IR passes.
It also hooks up the greedy register allocator to report spills. This
allows for interesting use cases like increasing interleaving on a loop
until spilling of registers is observed.
I still need to experiment whether reporting every spill scales but this
demonstrates for now that the functionality works from llc
using -pass-remarks*=<pass>.
Differential Revision: https://reviews.llvm.org/D29004
llvm-svn: 293110
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Code region is the only part of this class that is IR-specific. Code
region is moved down in the inheritance tree to a new derived class,
called DiagnosticInfoIROptimization.
All the existing remarks are derived from this new class now.
This allows the new MIR pass-remark classes to be derived from
DiagnosticInfoOptimizationBase.
Also because we keep the name DiagnosticInfoOptimizationBase, the clang
parts don't need any adjustment.
Differential Revision: https://reviews.llvm.org/D29003
llvm-svn: 293109
|
|
|
|
|
|
|
| |
This reverts commit r293033, per Danny's comment. In short, we require
domtrees to have roots at all times.
llvm-svn: 293075
|
|
|
|
|
|
|
|
|
|
|
| |
If dominator tree has no roots, the pass that calculates it is
likely to be skipped. It occures, for instance, in the case of
entities with linkage available_externally. Do not run tree
verification in such case.
Differential Revision: https://reviews.llvm.org/D28767
llvm-svn: 293033
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Verifications of dominator tree and loop info are expensive operations
so they are disabled by default. They can be enabled by command line
options -verify-dom-info and -verify-loop-info. These options however
enable checks only in files Dominators.cpp and LoopInfo.cpp. If some
transformation changes dominaror tree and/or loop info, it would be
convenient to place similar checks to the files implementing the
transformation.
This change makes corresponding flags global, so they can be used in
any file to optionally turn verification on.
llvm-svn: 292889
|
|
|
|
|
|
|
|
| |
that are duplicated for both const and non-const. NFC
Similar is already done for other methods in BasicBlock.
llvm-svn: 292753
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Specifically, we upgrade llvm.nvvm.:
* brev{32,64}
* clz.{i,ll}
* popc.{i,ll}
* abs.{i,ll}
* {min,max}.{i,ll,u,ull}
* h2f
These either map directly to an existing LLVM target-generic
intrinsic or map to a simple LLVM target-generic idiom.
In all cases, we check that the code we generate is lowered to PTX as we
expect.
These builtins don't need to be backfilled in clang: They're not
accessible to user code from nvcc.
Reviewers: tra
Subscribers: majnemer, cfe-commits, llvm-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D28793
llvm-svn: 292694
|
|
|
|
|
|
| |
Commits r291882 and related r291887.
llvm-svn: 292062
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a function's CFG when that CFG is unchanged.
This allows transformation passes to simply claim they preserve the CFG
and analysis passes to check for the CFG being preserved to remove the
fanout of all analyses being listed in all passes.
I've gone through and removed or cleaned up as many of the comments
reminding us to do this as I could.
Differential Revision: https://reviews.llvm.org/D28627
llvm-svn: 292054
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
To fix a release vs debug build linking error, r259695 made the body of assertModuleIsMaterialized empty if Value.cpp gets compiled in a release build. This way any code compiled as a debug build can still link against a release version of the function.
This patch takes this a step farther and removes all calls to it from Value.h in any code that includes it in a relase build.
This shrinks the opt binary on my macbook build by 17240 bytes.
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28191
llvm-svn: 291883
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Running tests with expensive checks enabled exhibits some problems with
verification of pass results.
First, the pass verification may require results of analysis that are not
available. For instance, verification of loop info requires results of dominator
tree analysis. A pass may be marked as conserving loop info but does not need to
be dependent on DominatorTreePass. When a pass manager tries to verify that loop
info is valid, it needs dominator tree, but corresponding analysis may be
already destroyed as no user of it remained.
Another case is a pass that is skipped. For instance, entities with linkage
available_externally do not need code generation and such passes are skipped for
them. In this case result verification must also be skipped.
To solve these problems this change introduces a special flag to the Pass
structure to mark passes that have valid results. If this flag is reset,
verifications dependent on the pass result are skipped.
Differential Revision: https://reviews.llvm.org/D27190
llvm-svn: 291882
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D16077
llvm-svn: 291769
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Convention wisdom says that bytes in Function are precious, and the
vast, vast majority of globals do not live in special sections. Even
when they do, they tend to live in the same section. Store the section
name on the LLVMContext in a StringSet, and maintain a map from
GlobalObject* to section name like we do for metadata, prefix data, etc.
The fact that we've survived this long wasting at least three pointers
of space in Function suggests that Function bytes are perhaps not as
precious as we once thought. Given that most functions have metadata
attachments when debug info is enabled, we might consider adding a
pointer here to make that access more efficient.
Reviewers: jlebar, dexonsmith, mehdi_amini
Subscribers: mehdi_amini, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D28150
llvm-svn: 291613
|
|
|
|
|
|
| |
Testing already covered by CodeGen/ARM/rbit.ll
llvm-svn: 291587
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D28379
llvm-svn: 291575
|
|
|
|
|
|
| |
shufflevectors. There are some codegen problems here that I'll try to fix in future commits.
llvm-svn: 290864
|
|
|
|
|
|
|
|
| |
shufflevectors. This unfortunately generates some really terrible code without VLX support due to v2i1 and v4i1 not being legal.
Hopefully we can improve that in future patches.
llvm-svn: 290863
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes the issue exposed in PR31393, where we weren't trying
sufficiently hard to diagnose bad TBAA metadata.
This does reduce the variety in the error messages we print out, but I
think the tradeoff of verifying more, simply and quickly overrules the
need for more helpful error messags here.
llvm-svn: 290713
|
|
|
|
| |
llvm-svn: 290712
|
|
|
|
| |
llvm-svn: 290711
|
|
|
|
|
|
|
|
|
|
| |
This change adds a new intrinsic which is intended to provide memcpy functionality
with additional atomicity guarantees. Please refer to the review thread
or language reference for further details.
Differential Revision: https://reviews.llvm.org/D27133
llvm-svn: 290708
|
|
|
|
|
|
|
|
| |
I added one for Value back in r262045, and I'm starting to think we
should have these for any class with bitfields whose memory efficiency
really matters.
llvm-svn: 290698
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously isIntrinsic() called getName(). This involves a hashtable
lookup, so is nontrivially expensive. And isIntrinsic() is called
frequently, particularly by dyn_cast<IntrinsicInstr>.
This patch steals a bit of IntID and uses that to store whether or not
getName() starts with "llvm."
Reviewers: bogner, arsenm, joker-eph
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D22949
llvm-svn: 290691
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
that require deferred invalidation.
This handles the other real-world invalidation scenario that we have
cases of: a function analysis which caches references to a module
analysis. We currently do this in the AA aggregation layer and might
well do this in other places as well.
Since this is relative rare, the technique is somewhat more cumbersome.
Analyses need to register themselves when accessing the outer analysis
manager's proxy. This proxy is already necessarily present to allow
access to the outer IR unit's analyses. By registering here we can track
and trigger invalidation when that outer analysis goes away.
To make this work we need to enhance the PreservedAnalyses
infrastructure to support a (slightly) more explicit model for "sets" of
analyses, and allow abandoning a single specific analyses even when
a set covering that analysis is preserved. That allows us to describe
the scenario of preserving all Function analyses *except* for the one
where deferred invalidation has triggered.
We also need to teach the invalidator API to support direct ID calls
instead of always going through a template to dispatch so that we can
just record the ID mapping.
I've introduced testing of all of this both for simple module<->function
cases as well as for more complex cases involving a CGSCC layer.
Much like the previous patch I've not tried to fully update the loop
pass management layer because that layer is due to be heavily reworked
to use similar techniques to the CGSCC to handle updates. As that
happens, we'll have a better testing basis for adding support like this.
Many thanks to both Justin and Sean for the extensive reviews on this to
help bring the API design and documentation into a better state.
Differential Revision: https://reviews.llvm.org/D27198
llvm-svn: 290594
|
|
|
|
|
|
| |
to unmasked intrinsics plus a select.
llvm-svn: 290583
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D27642
llvm-svn: 290514
|
|
|
|
|
|
| |
... so it becomes available to DIExpressionCursor.
llvm-svn: 290322
|
|
|
|
| |
llvm-svn: 290283
|
|
|
|
| |
llvm-svn: 290158
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
|
|
|
|
|
|
|
|
|
| |
It currently is in an unnamed namespace and then it shouldn't be used
from something in the header file. This actually triggers a warning with
GCC:
../include/llvm/IR/Verifier.h:39:7: warning: ‘llvm::TBAAVerifier’ has a field ‘llvm::TBAAVerifier::Diagnostic’ whose type uses the anonymous namespace [enabled by default]
llvm-svn: 289942
|
|
|
|
|
|
|
|
|
|
|
| |
This is intended to be used (in a later patch) by the BitcodeReader
to detect invalid TBAA and drop them when loading bitcode, so that
we don't break client that have legacy bitcode with possible invalid
TBAA.
Differential Revision: https://reviews.llvm.org/D27838
llvm-svn: 289927
|
|
|
|
| |
llvm-svn: 289926
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
|
|
|
|
|
|
| |
This reverts commit 289902 while investigating bot berakage.
llvm-svn: 289906
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
|
|
|
|
|
|
|
|
|
| |
This used to be allowed before r289402 by default (before r289402 you
could have TBAA metadata on any instruction), and while I'm not sure
that it helps, it does sound reasonable enough to not fail the verifier
and we have out-of-tree users who use this.
llvm-svn: 289872
|
|
|
|
|
|
|
|
|
|
|
|
| |
FileName and Directory.
This way it will be easier to expand DIFile (e.g., to contain checksum) without the need to modify the createCompileUnit() API.
Reviewers: llvm-commits, rnk
Differential Revision: https://reviews.llvm.org/D27762
llvm-svn: 289702
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change adds some verification in the IR verifier around struct path
TBAA metadata.
Other than some basic sanity checks (e.g. we get constant integers where
we expect constant integers), this checks:
- That by the time an struct access tuple `(base-type, offset)` is
"reduced" to a scalar base type, the offset is `0`. For instance, in
C++ you can't start from, say `("struct-a", 16)`, and end up with
`("int", 4)` -- by the time the base type is `"int"`, the offset
better be zero. In particular, a variant of this invariant is needed
for `llvm::getMostGenericTBAA` to be correct.
- That there are no cycles in a struct path.
- That struct type nodes have their offsets listed in an ascending
order.
- That when generating the struct access path, you eventually reach the
access type listed in the tbaa tag node.
Reviewers: dexonsmith, chandlerc, reames, mehdi_amini, manmanren
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26438
llvm-svn: 289402
|
|
|
|
|
|
|
|
|
| |
isGEPWithNoNotionalOverIndexing() (PR31262)
This should fix:
https://llvm.org/bugs/show_bug.cgi?id=31262
llvm-svn: 289401
|