| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
| |
debugging a tester failure.
llvm-svn: 321920
|
|
|
|
|
|
| |
investigate builder / test failures.
llvm-svn: 321910
|
|
|
|
| |
llvm-svn: 321858
|
|
|
|
|
|
|
|
| |
The original commit broke the builders due to a think-o in an assertion:
AsynchronousSymbolQuery's constructor needs to check the callback member
variables, not the constructor arguments.
llvm-svn: 321853
|
|
|
|
| |
llvm-svn: 321842
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SymbolSource.
These new APIs are a first stab at tackling some current shortcomings of ORC,
especially in performance and threading support.
VSO (Virtual Shared Object) is a symbol table representing the symbol
definitions of a set of modules that behave as if they had been statically
linked together into a shared object or dylib. Symbol definitions, either
pre-defined addresses or lazy definitions, can be added and queries for symbol
addresses made. The table applies the same linkage strength rules that static
linkers do when constructing a dylib or shared object: duplicate definitions
result in errors, strong definitions override weak or common ones. This class
should improve symbol lookup speed by providing centralized symbol tables (as
compared to the findSymbol implementation in the in-tree ORC layers, which
maintain one symbol table per object file / module added).
AsynchronousSymbolQuery is a query for the addresses of a set of symbols.
Query results are returned via a callback once they become available. Querying
for a set of symbols, rather than one symbol at a time (as the current lookup
scheme does) the JIT has the opportunity to make better use of available
resources (e.g. by spawning multiple jobs to materialize the requested symbols
if possible). Returning results via a callback makes queries asynchronous, so
queries from multiple threads of JIT'd code can proceed simultaneously.
SymbolSource represents a source of symbol definitions. It is used when
adding lazy symbol definitions to a VSO. Symbol definitions can be materialized
when needed or discarded if a stronger definition is found. Materializing on
demand via SymbolSources should (eventually) allow us to remove the lazy
materializers from JITSymbol, which will in turn allow the removal of many
current error checks and reduce the number of RPC round-trips involved in
materializing remote symbols. Adding a discard function allows sources to
discard symbol definitions (or mark them as available_externally), reducing the
amount of redundant code generated by the JIT for ODR symbols.
llvm-svn: 321838
|
|
|
|
| |
llvm-svn: 320621
|
|
|
|
|
|
| |
Bug found by Stefan Granitz. Thanks Stefan!
llvm-svn: 314436
|
|
|
|
|
|
| |
This can be used to add a relocatable object to the JIT session.
llvm-svn: 313474
|
|
|
|
| |
llvm-svn: 313346
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces RemoteObjectClientLayer and RemoteObjectServerLayer,
which can be used to forward ORC object-layer operations from a JIT stack in
the client to a JIT stack (consisting only of object-layers) in the server.
This is a new way to support remote-JITing in LLVM. The previous approach
(supported by OrcRemoteTargetClient and OrcRemoteTargetServer) used a
remote-mapping memory manager that sat "beneath" the JIT stack and sent
fully-relocated binary blobs to the server. The main advantage of the new
approach is that relocatable objects can be cached on the server and re-used
(if the code that they represent hasn't changed), whereas fully-relocated blobs
can not (since the addresses they have been permanently bound to will change
from run to run).
llvm-svn: 312511
|
|
|
|
|
|
|
|
| |
Calling grow may result in an error if, for example, this is a callback
manager for a remote target. We need to be able to return this error to the
callee.
llvm-svn: 312429
|
|
|
|
|
|
|
|
|
| |
The comment explains the reason behind the change in member variable order in
r312086.
Thanks to Philip Reames for the suggestion.
llvm-svn: 312205
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
https://reviews.llvm.org/D36888
From that review description:
When an OrcMCJITReplacement object gets destructed, LazyEmitLayer may still
contain a shared_ptr of a module, which requires ShouldDelete in the deleter.
But ShouldDelete gets destructed before LazyEmitLayer due to the order of
declaration in OrcMCJITReplacement, which leads to a crash, when the destructor
of LazyEmitLayer is executed. Changing the order of declaration fixes this.
Patch by Moritz Kroll. Thanks Moritz!
llvm-svn: 312086
|
|
|
|
| |
llvm-svn: 311875
|
|
|
|
|
|
|
|
| |
creation functions.
This should allow lli to lazily execute code using OrcLazyJIT on AArch64.
llvm-svn: 310938
|
|
|
|
|
|
|
|
| |
This patch updates the ORC layers and utilities to return and propagate
llvm::Errors where appropriate. This is necessary to allow ORC to safely handle
error cases in cross-process and remote JITing.
llvm-svn: 307350
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
symbol resolver argument.
De-templatizing the symbol resolver is part of the ongoing simplification of
ORC layer API.
Removing the memory management argument (and delegating construction of memory
managers for RTDyldObjectLinkingLayer to a functor passed in to the constructor)
allows us to build JITs whose base object layers need not be compatible with
RTDyldObjectLinkingLayer's memory mangement scheme. For example, a 'remote
object layer' that sends fully relocatable objects directly to the remote does
not need a memory management scheme at all (that will be handled by the remote).
llvm-svn: 307058
|
|
|
|
|
|
|
|
|
| |
I think there are some destruction ordering issues here. The
ShouldDelete map seems to be getting destroyed before the shared_ptr
deleter lambda accesses it. In any case, this avoids inserting elements
into the map during shutdown.
llvm-svn: 306736
|
|
|
|
| |
llvm-svn: 306182
|
|
|
|
|
|
|
|
|
| |
Revert "[ORC] Remove redundant semicolons from DEFINE_SIMPLE_CONVERSION_FUNCTIONS uses."
Revert "[ORC] Move ORC IR layer interface from addModuleSet to addModule and fix the module type as std::shared_ptr<Module>."
They broke ExecutionEngine/OrcMCJIT/test-global-ctors.ll on linux.
llvm-svn: 306176
|
|
|
|
| |
llvm-svn: 306168
|
|
|
|
|
|
| |
module type as std::shared_ptr<Module>.
llvm-svn: 306166
|
|
|
|
|
|
|
|
|
| |
move the ObjectCache from the IRCompileLayer to SimpleCompiler.
This is the first in a series of patches aimed at cleaning up and improving the
robustness and performance of the ORC APIs.
llvm-svn: 306058
|
|
|
|
|
|
| |
You Use warnings; other minor fixes (NFC).
llvm-svn: 305760
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
frames.
RuntimeDyld was previously responsible for tracking allocated EH frames, but it
makes more sense to have the RuntimeDyld::MemoryManager track them (since the
frames are allocated through the memory manager, and written to memory owned by
the memory manager). This patch moves the frame tracking into
RTDyldMemoryManager, and changes the deregisterFrames method on
RuntimeDyld::MemoryManager from:
void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size);
to:
void deregisterEHFrames();
Separating this responsibility will allow ORC to continue to throw the
RuntimeDyld instances away post-link (saving a few dozen bytes per lazy
function) while properly deregistering frames when modules are unloaded.
This patch also updates ORC to call deregisterEHFrames when modules are
unloaded. This fixes a bug where an exception that tears down the JIT can then
unwind through dangling EH frames that have been deallocated but not
deregistered, resulting in UB.
For people using SectionMemoryManager this should be pretty much a no-op. For
people with custom allocators that override registerEHFrames/deregisterEHFrames,
you will now be responsible for tracking allocated EH frames.
Reviewed in https://reviews.llvm.org/D32829
llvm-svn: 302589
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch allows Error and Expected types to be passed to and returned from
RPC functions.
Serializers and deserializers for custom error types (types deriving from the
ErrorInfo class template) can be registered with the SerializationTraits for
a given channel type (see registerStringError in RPCSerialization.h for an
example), allowing a given custom type to be sent/received. Unregistered types
will be serialized/deserialized as StringErrors using the custom type's log
message as the error string.
llvm-svn: 300167
|
|
|
|
| |
llvm-svn: 300157
|
|
|
|
| |
llvm-svn: 300155
|
|
|
|
|
|
|
| |
This will allow orcError to be used in convertToErrorCode implementations,
which will help in transitioning Orc RPC to Error.
llvm-svn: 299610
|
|
|
|
|
|
|
|
|
|
| |
The current ObjectLinkingLayer (now RTDyldObjectLinkingLayer) links objects
in-process using MCJIT's RuntimeDyld class. In the near future I hope to add new
object linking layers (e.g. a remote linking layer that links objects in the JIT
target process, rather than the client), so I'm renaming this class to be more
descriptive.
llvm-svn: 295636
|
|
|
|
|
|
|
|
|
|
| |
negotiateFunction where appropriate.
Replacing the old ECError with a custom type allows us to attach the name of
the function that could not be negotiated, enabling better diagnostics for
negotiation failures.
llvm-svn: 292055
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
multiple asynchronous RPC calls.
ParallelCallGroup allows multiple asynchronous calls to be dispatched,
and provides a wait method that blocks until all asynchronous calls have
been executed on the remote and all return value handlers run on the
local machine.
This will allow, for example, the JIT client to issue memory allocation calls
for all sections in parallel, then block until all memory has been allocated
on the remote and the allocated addresses registered with the client, at which
point the JIT client can proceed to applying relocations.
llvm-svn: 290523
|
|
|
|
|
|
| |
This preparation to remove SetVector.h dependency on SmallSet.h.
llvm-svn: 288256
|
|
|
|
| |
llvm-svn: 286639
|
|
|
|
| |
llvm-svn: 286621
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(1) Add support for function key negotiation.
The previous version of the RPC required both sides to maintain the same
enumeration for functions in the API. This means that any version skew between
the client and server would result in communication failure.
With this version of the patch functions (and serializable types) are defined
with string names, and the derived function signature strings are used to
negotiate the actual function keys (which are used for efficient call
serialization). This allows clients to connect to any server that supports a
superset of the API (based on the function signatures it supports).
(2) Add a callAsync primitive.
The callAsync primitive can be used to install a return value handler that will
run as soon as the RPC function's return value is sent back from the remote.
(3) Launch policies for RPC function handlers.
The new addHandler method, which installs handlers for RPC functions, takes two
arguments: (1) the handler itself, and (2) an optional "launch policy". When the
RPC function is called, the launch policy (if present) is invoked to actually
launch the handler. This allows the handler to be spawned on a background
thread, or added to a work list. If no launch policy is used, the handler is run
on the server thread itself. This should only be used for short-running
handlers, or entirely synchronous RPC APIs.
(4) Zero cost cross type serialization.
You can now define serialization from any type to a different "wire" type. For
example, this allows you to call an RPC function that's defined to take a
std::string while passing a StringRef argument. If a serializer from StringRef
to std::string has been defined for the channel type this will be used to
serialize the argument without having to construct a std::string instance.
This allows buffer reference types to be used as arguments to RPC calls without
requiring a copy of the buffer to be made.
llvm-svn: 286620
|
|
|
|
|
|
|
| |
Now that we have dropped MSVC 2013, all supported compilers support
noexcept and we can drop this portability macro.
llvm-svn: 284672
|
|
|
|
|
|
|
|
| |
CompileOnDemandLayer.
Also contains a tweak to the orc-lazy jit in LLI to enable the test case.
llvm-svn: 280632
|
|
|
|
| |
llvm-svn: 278149
|
|
|
|
| |
llvm-svn: 278069
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch causes RuntimeDyld to check for existing definitions when it
encounters weak symbols. If a definition already exists then the new weak
definition is discarded. All symbol lookups within a "logical dylib" should now
agree on the address of any given weak symbol. This allows the JIT to better
match the behavior of the static linker for C++ code.
This support is only partial, as it does not allow strong definitions that
occur after the first weak definition (in JIT symbol lookup order) to override
the previous weak definitions. Support for this will be added in a future
patch.
llvm-svn: 278065
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch replaces RuntimeDyld::SymbolInfo with JITSymbol: A symbol class
that is capable of lazy materialization (i.e. the symbol definition needn't be
emitted until the address is requested). This can be used to support common
and weak symbols in the JIT (though this is not implemented in this patch).
For consistency, RuntimeDyld::SymbolResolver is renamed to JITSymbolResolver.
For space efficiency a new class, JITEvaluatedSymbol, is introduced that
behaves like the old RuntimeDyld::SymbolInfo - i.e. it is just a pair of an
address and symbol flags. Instances of JITEvaluatedSymbol can be used in
symbol-tables to avoid paying the space cost of the materializer.
llvm-svn: 277386
|
|
|
|
|
|
|
| |
As suggested by Rafael in review of D22079 - this was accidentally left out of
the final commit (r275316).
llvm-svn: 275469
|
|
|
|
| |
llvm-svn: 275361
|
|
|
|
|
|
| |
Should fix the bots broken by r275316.
llvm-svn: 275353
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
See http://reviews.llvm.org/D22079
Changes the Archive::child_begin and Archive::children to require a reference
to an Error. If iterator increment fails (because the archive header is
damaged) the iterator will be set to 'end()', and the error stored in the
given Error&. The Error value should be checked by the user immediately after
the loop. E.g.:
Error Err;
for (auto &C : A->children(Err)) {
// Do something with archive child C.
}
// Check the error immediately after the loop.
if (Err)
return Err;
Failure to check the Error will result in an abort() when the Error goes out of
scope (as guaranteed by the Error class).
llvm-svn: 275316
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
llvm-svn: 272709
|
|
|
|
|
|
|
| |
Avoids unnecessary copies. All changes audited & pass tests with asan.
No functional change intended.
llvm-svn: 272190
|