| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
An older version of this could return false but now that this always succeeds we can just inline and simplify it.
llvm-svn: 357999
|
|
|
|
|
|
|
|
| |
handling
When bitcasting from a source op to a larger bitwidth op, split the demanded bits and OR them on top of one another and demand those merged bits in the SimplifyDemandedBits call on the source op.
llvm-svn: 357992
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
With MergeValues() removed, amend DebugLocEntry's constructor so that it
takes multiple values rather than a single, and keep non-fragment values
in OpenRanges, as this allows some cleanup of the code in
buildLocationList().
Reviewers: aprantl, dblaikie, loladiro
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D59303
llvm-svn: 357988
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The MergeValues() function would try to merge two entries if they shared
the same beginning label. Having the same beginning label means that the
former entry's range would be empty; however, after D55919 we no longer
create entries for empty ranges, so we can no longer land in a situation
where that check in MergeValues would succeed. Instead, the "merging" is
done by keeping the live values from the preceding empty ranges in
OpenRanges, and adding them to the first non-empty range.
Reviewers: aprantl, dblaikie, loladiro
Reviewed By: aprantl
Subscribers: llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D59301
llvm-svn: 357974
|
|
|
|
|
|
| |
Be more selective in the SimplifyDemandedBits -> SimplifyDemandedVectorElts bitcast call based on the demanded elts.
llvm-svn: 357942
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example.
COMMON /ALPHA/ I, J
For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block.
@alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33
!14 = distinct !DISubprogram(…)
!20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha")
!25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24)
!27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression())
!29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28)
!30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression())
!31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28)
!32 = !DIExpression(DW_OP_plus_uconst, 4)
!33 = !DIGlobalVariableExpression(var: !31, expr: !32)
The DWARF generated for this is as follows.
DW_TAG_common_block:
DW_AT_name: alpha
DW_AT_location: @alpha_+0
DW_TAG_variable:
DW_AT_name: common alpha
DW_AT_type: array of 8 bytes
DW_AT_location: @alpha_+0
DW_TAG_variable:
DW_AT_name: i
DW_AT_type: integer*4
DW_AT_location: @Alpha+0
DW_TAG_variable:
DW_AT_name: j
DW_AT_type: integer*4
DW_AT_location: @Alpha+4
Patch by Eric Schweitz!
Differential Revision: https://reviews.llvm.org/D54327
llvm-svn: 357934
|
|
|
|
| |
llvm-svn: 357861
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Detect dead lanes can create some dead defs. Then RenameIndependentSubregs
will break a REG_SEQUENCE which may use these dead defs. At this point
a dead instruction can be removed but we do not run a DCE anymore.
MachineDCE was only running before live variable analysis. The patch
adds a mean to preserve LiveIntervals and SlotIndexes in case it works
past this.
Differential Revision: https://reviews.llvm.org/D59626
llvm-svn: 357805
|
|
|
|
| |
llvm-svn: 357773
|
|
|
|
|
|
|
|
|
|
| |
Second half of PR40800, this patch adds DAG undef handling to fcmp instructions to match the behavior in llvm::ConstantFoldCompareInstruction, this permits constant folding of vector comparisons where some elements had been reduced to UNDEF (by SimplifyDemandedVectorElts etc.).
This involves a lot of tweaking to reduced tests as bugpoint loves to reduce fcmp arguments to undef........
Differential Revision: https://reviews.llvm.org/D60006
llvm-svn: 357765
|
|
|
|
|
|
|
| |
It's annoying to have to create an array of the result type,
particularly when you don't care about the size of the value.
llvm-svn: 357763
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are a variety of vector patterns that may be profitably reduced to a
scalar op when scalar ops are performed using a subset (typically, the
first lane) of the vector register file.
For x86, this is true for float/double ops and element 0 because
insert/extract is just a sub-register rename.
Other targets should likely enable the hook in a similar way.
Differential Revision: https://reviews.llvm.org/D60150
llvm-svn: 357760
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Teach SelectionDAG how to compute known bits of ISD::CopyFromReg if
the virtual reg used has one def only.
This can be particularly useful when calling isBaseWithConstantOffset()
with the ISD::CopyFromReg argument, as more optimizations may get enabled
in the result.
Also add a missing truncation on X86, found by testing of this patch.
Change-Id: Id1c9fceec862d118c54a5b53adf72ada5d6daefa
Reviewers: bogner, craig.topper, RKSimon
Reviewed By: RKSimon
Subscribers: lebedev.ri, nemanjai, jvesely, nhaehnle, javed.absar, jsji, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59535
llvm-svn: 357745
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Lowering safepoint checks that all gc.relocaes observed in safepoint
must be lowered. However Fast-Isel is able to skip dead gc.relocate.
To resolve this issue we just ignore dead gc.relocate in the check.
Reviewers: reames
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D60184
llvm-svn: 357742
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D60290
llvm-svn: 357736
|
|
|
|
|
|
|
|
| |
Rename the functions that query the optimization kind attributes.
Differential revision: https://reviews.llvm.org/D60287
llvm-svn: 357731
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Fast ISel has a fallback to SelectionDAGISel in case it cannot handle the instruction.
This works as follows:
Using reverse order, try to select instruction using Fast ISel, if it cannot handle instruction it fallbacks to SelectionDAGISel
for these instructions if it is a call and continue fast instruction selections.
However if unhandled instruction is not a call or statepoint related instruction it fallbacks to SelectionDAGISel for all remaining
instructions in basic block.
However gc.result instruction is missed and as a result it is possible that gc.result is processed earlier than statepoint
causing breakage invariant the gc.results should be handled after statepoint.
Test is updated because in the current form fast-isel cannot handle ret instruction (due to i1 ret type without explicit ext)
and as a result test does not check fast-isel at all.
Reviewers: reames
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D60182
llvm-svn: 357672
|
|
|
|
|
|
|
|
|
| |
Create method `optForNone()` testing for the function level equivalent of
`-O0` and refactor appropriately.
Differential revision: https://reviews.llvm.org/D59852
llvm-svn: 357638
|
|
|
|
|
|
|
|
|
| |
Same as G_EXP. Add a test, and update legalizer-info-validation.mir and
f16-instructions.ll.
Differential Revision: https://reviews.llvm.org/D60165
llvm-svn: 357605
|
|
|
|
|
|
| |
Use consistent variable names down the SimplifyDemanded* call stack so debugging isn't such a annoyance.
llvm-svn: 357602
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are 3 changes to make this correspond to the same transform in instcombine:
1. Remove the legality check - we can't create anything less legal than we started with.
2. Ease the use restriction, so we only bail out if both operands have >1 use.
3. Ease the use restriction for binops with a repeated operand (eg, mul x, x).
As discussed in D60150, there's a scalarization opportunity that will be made
easier by allowing this transform more generally.
llvm-svn: 357580
|
|
|
|
|
|
| |
Noticed during prep for a patch for PR40758.
llvm-svn: 357571
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As it caused a pathological compile-time regressionin V8, see PR41352.
> Improve both start and end lifetime nodes chain dependencies.
>
> Reviewers: courbet
>
> Reviewed By: courbet
>
> Subscribers: hiraditya, llvm-commits
>
> Tags: #llvm
>
> Differential Revision: https://reviews.llvm.org/D59795
This also reverts the follow-up r357309:
> [DAGCombiner] Rewrite ImproveLifetimeNodeChain to avoid DAG loop.
>
> Avoid EXPENSIVE_CHECK failure. NFCI.
llvm-svn: 357563
|
|
|
|
|
|
|
|
| |
Also update arm64-irtranslator.ll.
Differential Revision: https://reviews.llvm.org/D60140
llvm-svn: 357538
|
|
|
|
| |
llvm-svn: 357498
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are various places in LLVM where the definition of StackID is not
properly honoured, for example in PEI where objects with a StackID > 0 are
allocated on the default stack (StackID0). This patch enforces that PEI
only considers allocating objects to StackID 0.
Reviewers: arsenm, thegameg, MatzeB
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D60062
llvm-svn: 357460
|
|
|
|
|
|
|
|
|
|
| |
isPotentiallyReachable.
The leads to some ambiguous overloads, so update three callers.
Differential Revision: https://reviews.llvm.org/D60085
llvm-svn: 357447
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds an implementation of a PC-relative addressing sequence to be
used when -mcmodel=medium is specified. With absolute addressing, a 'medium'
codemodel may cause addresses to be out of range. This is because while
'medium' implies a 2 GiB addressing range, this 2 GiB can be at any offset as
opposed to 'small', which implies the first 2 GiB only.
Note that LLVM/Clang currently specifies code models differently to GCC, where
small and medium imply the same functionality as GCC's medlow and medany
respectively.
Differential Revision: https://reviews.llvm.org/D54143
Patch by Lewis Revill.
llvm-svn: 357393
|
|
|
|
|
|
| |
Avoid EXPENSIVE_CHECK failure. NFCI.
llvm-svn: 357309
|
|
|
|
|
|
|
| |
Avoid generating redundant TokenFactor when all merged stores have
the same chain.
llvm-svn: 357299
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Nodes that have no uses are eventually pruned when they are selected
from the worklist. Record nodes newly added to the worklist or DAG and
perform pruning after every combine attempt.
Reviewers: efriedma, RKSimon, craig.topper, spatel, jyknight
Reviewed By: jyknight
Subscribers: jdoerfert, jyknight, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58070
llvm-svn: 357283
|
|
|
|
|
|
|
| |
Refactor the option `max-jump-table-size` to default to the maximum
representable number. Essentially, NFC.
llvm-svn: 357280
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Various SelectionDAG non-combine operations (e.g. the getNode smart
constructor and legalization) may leave dangling nodes by applying
optimizations without fully pruning unused result values. This results
in nodes that are never added to the worklist and therefore can not be
pruned.
Add a node inserter for the combiner to make sure such nodes have the
chance of being pruned. This allows a number of additional peephole
optimizations.
Reviewers: efriedma, RKSimon, craig.topper, jyknight
Reviewed By: jyknight
Subscribers: msearles, jyknight, sdardis, nemanjai, javed.absar, hiraditya, jrtc27, atanasyan, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58068
llvm-svn: 357279
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After investigating the examples from D59777 targeting an SSE4.1 machine,
it looks like a very different problem due to how we map illegal types (256-bit in these cases).
We're missing a shuffle simplification that maps elements of a vector back to a shuffled operand.
We have a more general version of this transform in DAGCombiner::visitVECTOR_SHUFFLE(), but that
generality means it is limited to patterns with a one-use constraint, and the examples here have
2 uses. We don't need any uses or legality limitations for a simplification (no new value is
created).
It looks like we miss this pattern in IR too.
In one of the zext examples here, we have shuffle masks like this:
Shuf0 = vector_shuffle<0,u,3,7,0,u,3,7>
Shuf = vector_shuffle<4,u,6,7,u,u,u,u>
...so that's moving the high half of the 1st vector into the low half. But the high half of the
1st vector is already identical to the low half.
Differential Revision: https://reviews.llvm.org/D59961
llvm-svn: 357258
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Improve both start and end lifetime nodes chain dependencies.
Reviewers: courbet
Reviewed By: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59795
llvm-svn: 357256
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a sibling to rL357178 that I noticed we'd hit if we chose
an alternate transform in D59818.
%z = zext i8 %x to i32
%dec = add i32 %z, -1
%r = sext i32 %dec to i64
=>
%z2 = zext i8 %x to i64
%r = add i64 %z2, -1
https://rise4fun.com/Alive/kPP
The x86 vector diffs show a slight regression, so there's a chance
that we should limit this and the previous transform to scalars.
But given that we allowed vectors before, I'm matching that behavior
here. We should change both transforms together if that's the right
thing to do.
llvm-svn: 357254
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cluster
In the example below, we would previously emit two range checks, one for cases
1--3 and one for 4--6. This patch makes us exploit the fact that the
fall-through is unreachable and only one range check is necessary.
switch i32 %i, label %default [
i32 1, label %bb1
i32 2, label %bb1
i32 3, label %bb1
i32 4, label %bb2
i32 5, label %bb2
i32 6, label %bb2
]
default: unreachable
llvm-svn: 357252
|
|
|
|
|
|
|
|
|
| |
Some DAG mutations can only be applied to `ScheduleDAGMI`, and have to
internally cast a `ScheduleDAGInstrs` to `ScheduleDAGMI`.
There is nothing actually specific to `ScheduleDAGMI` in `Topo`.
llvm-svn: 357239
|
|
|
|
| |
llvm-svn: 357213
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Even if the interleaving transform would otherwise be legal, we shouldn't
introduce an interleaved load that is wider than the original load: it might
have undefined behavior.
It might be possible to perform some sort of mask-narrowing transform in
some cases (using a narrower interleaved load, then extending the
results using shufflevectors). But I haven't tried to implement that,
at least for now.
Fixes https://bugs.llvm.org/show_bug.cgi?id=41245 .
Differential Revision: https://reviews.llvm.org/D59954
llvm-svn: 357212
|
|
|
|
| |
llvm-svn: 357179
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As noted in D59818:
%z = zext i8 %x to i32
%neg = sub i32 0, %z
%r = sext i32 %neg to i64
=>
%z2 = zext i8 %x to i64
%r = sub i64 0, %z2
https://rise4fun.com/Alive/KzSR
llvm-svn: 357178
|
|
|
|
|
|
|
|
|
|
|
|
| |
build_vector(truncate(x),truncate(y))
If scalar truncates are free, attempt to pre-truncate build_vectors source operands.
Only attempt to do this before legalization as we often end up with truncations/extensions during build_vector lowering.
Differential Revision: https://reviews.llvm.org/D59654
llvm-svn: 357161
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Lifetime nodes were inhibiting TokenFactor simplification inhibiting chain-based optimizations.
Reviewers: courbet, jyknight
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59897
llvm-svn: 357121
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When lowering a load or store for TypeWidenVector, the type legalizer
would use a single load or store if the associated integer type was legal
or promoted. E.g. it loads a v4i8 as an i32 if i32 is legal/promotable.
(See https://reviews.llvm.org/rL236528 for reference.)
This applies that behaviour to vector types. If the vector type is
TypePromoteInteger, the element type is going to be TypePromoteInteger
as well, which will lead to have a single promoting load rather than N
individual promoting loads. For instance, if we have a v3i1, we would
now have a load of v4i1 instead of 3 loads of i1.
Patch by Guillaume Marques. Thanks!
Differential Revision: https://reviews.llvm.org/D56201
llvm-svn: 357120
|
|
|
|
|
|
|
| |
This patch appears to trigger very large compile time increases in
halide builds.
llvm-svn: 357116
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
A recent fix (r355751) caused a compile time regression because setting
the ModifiedDT flag in optimizeSelectInst means that each time a select
instruction is optimized the function walk in runOnFunction stops and
restarts again (which was needed to build a new DT before we started
building it lazily in r356937). Now that the DT is built lazily, a
simple fix is to just reset the DT at this point, rather than restarting
the whole function walk.
In the future other places that set ModifiedDT may want to switch to
just resetting the DT directly. But that will require an evaluation to
ensure that they don't otherwise need to restart the function walk.
Reviewers: spatel
Subscribers: jdoerfert, llvm-commits, xur
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59889
llvm-svn: 357111
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Split out from D59749. The current implementation of isWrappedSet()
doesn't do what it says on the tin, and treats ranges like
[X, Max] as wrapping, because they are represented as [X, 0) when
using half-inclusive ranges. This also makes it inconsistent with
the semantics of isSignWrappedSet().
This patch renames isWrappedSet() to isUpperWrapped(), in preparation
for the introduction of a new isWrappedSet() method with corrected
behavior.
llvm-svn: 357107
|
|
|
|
|
|
|
|
| |
If there were only dbg_values in the block, recede would hit the
beginning of the block and try to use thet dbg_value as a real
instruction.
llvm-svn: 357105
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
instructions.
The artifact combiners push instructions which have been marked for deletion
onto an list for the legalizer to deal with on return. However, for trunc(ext)
combines the combiner routine recursively calls itself. When it does this the
dead instructions list may not be empty, and the other combiners don't expect
to be dealing with essentially invalid MIR (multiple vreg defs etc).
This change fixes it by ensuring that the dead instructions are processed on
entry into tryCombineInstruction.
As a result, this fix exposed a few places in tests where G_TRUNC instructions
were not being deleted even though they were dead.
Differential Revision: https://reviews.llvm.org/D59892
llvm-svn: 357101
|