| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This method checks whether a physical regiser or any of its aliases are
used in the function.
Using this function in SIRegisterInfo::findUnusedReg() should also fix
this reported failure:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20150803/292143.html
http://reviews.llvm.org/rL242173#inline-533
The report doesn't come with a testcase and I don't know enough about
AMDGPU to create one myself.
llvm-svn: 245329
|
| |
|
|
|
|
| |
subregister operands.
llvm-svn: 245315
|
| |
|
|
|
|
|
| |
These were missed when other uses were switched over:
http://llvm.org/viewvc/llvm-project?view=revision&revision=243994
llvm-svn: 245311
|
| |
|
|
|
|
|
| |
This commit adds a new function TargetFrameLowering::alignSPAdjust
and calls it from TargetInstrInfo::getSPAdjust. It fixes PR24142.
llvm-svn: 245253
|
| |
|
|
| |
llvm-svn: 245249
|
| |
|
|
| |
llvm-svn: 245247
|
| |
|
|
| |
llvm-svn: 245246
|
| |
|
|
| |
llvm-svn: 245245
|
| |
|
|
| |
llvm-svn: 245244
|
| |
|
|
|
|
|
|
|
|
| |
It is possible to be in a situation where more than one funclet token is
a valid SSA value. If we see a terminator which exits a funclet which
doesn't use the funclet's token, replace it with unreachable.
Differential Revision: http://reviews.llvm.org/D12074
llvm-svn: 245238
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When demoting an SSA value that has a use on a phi and one of the phi's
predecessors terminates with catchret, the edge needs to be split and the
load inserted in the new block, else we'll still have a cross-funclet SSA
value.
Add a test for this, and for the similar case where a def to be spilled is
on and invoke and a critical edge, which was already implemented but
missing a test.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12065
llvm-svn: 245218
|
| |
|
|
|
|
|
| |
I committed by accident a local hack that should not have made it upstream.
Sorry for the noise.
llvm-svn: 245212
|
| |
|
|
| |
llvm-svn: 245210
|
| |
|
|
|
|
|
|
|
|
| |
These only get generated if the target supports them. If one of the variants is not legal and the other is, and it is safe to do so, the other variant will be emitted.
For example on AArch32 (V8), we have scalar fminnm but not fmin.
Fix up a couple of tests while we're here - one now produces better code, and the other was just plain wrong to start with.
llvm-svn: 245196
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.
I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.
But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.
To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.
To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.
With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.
Differential Revision: http://reviews.llvm.org/D12063
llvm-svn: 245193
|
| |
|
|
| |
llvm-svn: 245181
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
For cases where we TRUNCATE and then ZERO_EXTEND to a larger size (often from vector legalization), see if we can mask the source data and then ZERO_EXTEND (instead of after a ANY_EXTEND). This can help avoid having to generate a larger mask, and possibly applying it to several sub-vectors.
(zext (truncate x)) -> (zext (and(x, m))
Includes a minor patch to SystemZ to better recognise 8/16-bit zero extension patterns from RISBG bit-extraction code.
This is the first of a number of minor patches to help improve the conversion of byte masks to clear mask shuffles.
Differential Revision: http://reviews.llvm.org/D11764
llvm-svn: 245160
|
| |
|
|
|
|
|
|
|
|
|
| |
function.
This was the same as getFrameIndexReference, but without the FrameReg
output.
Differential Revision: http://reviews.llvm.org/D12042
llvm-svn: 245148
|
| |
|
|
| |
llvm-svn: 245103
|
| |
|
|
|
|
| |
values.
llvm-svn: 245098
|
| |
|
|
| |
llvm-svn: 245097
|
| |
|
|
| |
llvm-svn: 245085
|
| |
|
|
| |
llvm-svn: 245082
|
| |
|
|
|
|
|
|
| |
This patch will be redone in a different way. See
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20150810/292978.html
for more details.
llvm-svn: 245071
|
| |
|
|
|
|
| |
its creation function. Update the relevant includes accordingly.
llvm-svn: 245019
|
| |
|
|
|
|
|
|
|
| |
creation function there.
Same basic refactoring as the other alias analyses. Nothing special
required this time around.
llvm-svn: 245012
|
| |
|
|
|
|
|
|
|
|
| |
I've used forward declarations and reorderd the source code some to make
this reasonably clean and keep as much of the code as possible in the
source file, including all the stratified set details. Just the basic AA
interface and the create function are in the header file, and the header
file is now included into the relevant locations.
llvm-svn: 245009
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit modifies the way the machine basic blocks are serialized - now the
machine basic blocks are serialized using a custom syntax instead of relying on
YAML primitives. Instead of using YAML mappings to represent the individual
machine basic blocks in a machine function's body, the new syntax uses a single
YAML block scalar which contains all of the machine basic blocks and
instructions for that function.
This is an example of a function's body that uses the old syntax:
body:
- id: 0
name: entry
instructions:
- '%eax = MOV32r0 implicit-def %eflags'
- 'RETQ %eax'
...
The same body is now written like this:
body: |
bb.0.entry:
%eax = MOV32r0 implicit-def %eflags
RETQ %eax
...
This syntax change is motivated by the fact that the bundled machine
instructions didn't map that well to the old syntax which was using a single
YAML sequence to store all of the machine instructions in a block. The bundled
machine instructions internally use flags like BundledPred and BundledSucc to
determine the bundles, and serializing them as MI flags using the old syntax
would have had a negative impact on the readability and the ease of editing
for MIR files. The new syntax allows me to serialize the bundled machine
instructions using a block construct without relying on the internal flags,
for example:
BUNDLE implicit-def dead %itstate, implicit-def %s1 ... {
t2IT 1, 24, implicit-def %itstate
%s1 = VMOVS killed %s0, 1, killed %cpsr, implicit killed %itstate
}
This commit also converts the MIR testcases to the new syntax. I developed
a script that can convert from the old syntax to the new one. I will post the
script on the llvm-commits mailing list in the thread for this commit.
llvm-svn: 244982
|
| |
|
|
| |
llvm-svn: 244953
|
| |
|
|
|
|
|
|
| |
This commit extracts the code that parses the memory operand's alignment into
a new method named 'parseAlignment' so that it can be reused when parsing the
basic block's alignment attribute.
llvm-svn: 244945
|
| |
|
|
|
|
|
|
|
| |
This commit renames the method 'diagFromLLVMAssemblyDiag' to
'diagFromBlockStringDiag'. This method will be used when converting diagnostics
from other YAML block strings, and not just the LLVM module block string, so
the new name should reflect that.
llvm-svn: 244943
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Update the demotion logic in WinEHPrepare to avoid creating new cleanups by
walking predecessors as necessary to insert stores for EH-pad PHIs.
Also avoid creating stores for EH-pad PHIs that have no uses.
The store/load placement is still pretty naive. Likely future improvements
(at least for optimized compiles) include:
- Share loads for related uses as possible
- Coalesce non-interfering use/def-related PHIs
- Store at definition point rather than each PHI pred for non-interfering
lifetimes.
Reviewers: rnk, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11955
llvm-svn: 244894
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we can properly promote mismatched FCOPYSIGNs (r244858), we
can mark the FP_ROUND on the result as truncating, to expose folding.
FCOPYSIGN doesn't change anything but the sign bit, so
(fp_round (fcopysign (fpext a), b))
is equivalent to (modulo the sign bit):
(fp_round (fpext a))
which is a no-op.
llvm-svn: 244862
|
| |
|
|
|
|
| |
This would have caught the problem in r244858.
llvm-svn: 244859
|
| |
|
|
|
|
|
|
|
|
|
| |
We don't care about its type, and there's even a combine that'll fold
away the FP_EXTEND if we let it run. However, until it does, we'll have
something broken like:
(f32 (fp_extend (f64 v)))
Scalar f16 follow-up to r243924.
llvm-svn: 244858
|
| |
|
|
|
|
|
|
| |
We already check that vectors have the same number of elements, we
don't need to use the scalar types explicitly: comparing the size of
the whole vector is enough.
llvm-svn: 244857
|
| |
|
|
|
|
|
| |
This commit fixes a bug where MI parser couldn't resolve the named IR
references that referenced named global values.
llvm-svn: 244817
|
| |
|
|
| |
llvm-svn: 244816
|
| |
|
|
| |
llvm-svn: 244815
|
| |
|
|
|
|
|
|
|
| |
This commit moves the code that parses the frame indices for the fixed stack
objects from the method 'parseFixedStackObjectOperand' to a new method named
'parseFixedStackFrameIndex', so that it can be reused when parsing fixed stack
pseudo source values.
llvm-svn: 244814
|
| |
|
|
| |
llvm-svn: 244813
|
| |
|
|
| |
llvm-svn: 244809
|
| |
|
|
| |
llvm-svn: 244806
|
| |
|
|
| |
llvm-svn: 244803
|
| |
|
|
|
|
|
|
|
|
|
|
| |
r242520 was reverted in r244313 as the expected behaviour of the alias
attribute in C is that the alias has the same size as the aliasee. However
we can re-introduce adding the size on the alias when the aliasee does not,
from a source code or object perspective, exist as a discrete entity. This
happens when the aliasee is not a symbol, or when that symbol is private.
Differential Revision: http://reviews.llvm.org/D11943
llvm-svn: 244752
|
| |
|
|
|
|
|
|
| |
On Mach-O emitting aliases for the variables that make up a MergedGlobals
variable can cause problems when linking with dead stripping enabled so don't
do that, except for external variables where we must emit an alias.
llvm-svn: 244748
|
| |
|
|
|
|
|
|
|
|
| |
This abstracts away the test for "when can we fold across a MachineInstruction"
into the the MI interface, and changes call-frame optimization use the same test
the peephole optimizer users.
Differential Revision: http://reviews.llvm.org/D11945
llvm-svn: 244729
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This commit transforms the mips-specific 'MipsCallEntry' subclass of the
'PseudoSourceValue' class into two, target-independent subclasses named
'GlobalValuePseudoSourceValue' and 'ExternalSymbolPseudoSourceValue'.
This change makes it easier to serialize the pseudo source values by removing
target-specific pseudo source values.
Reviewers: Akira Hatanaka
llvm-svn: 244698
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit introduces a new enumerator named 'PSVKind' in the
'PseudoSourceValue' class. This enumerator is now used to distinguish between
the various kinds of pseudo source values.
This change is done in preparation for the changes to the pseudo source value
object management and to the PseudoSourceValue's class hierarchy - the next two
PseudoSourceValue commits will get rid of the global variable that manages the
pseudo source values and the mips specific MipsCallEntry subclass.
Reviewers: Akira Hatanaka
llvm-svn: 244687
|