| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D14996
llvm-svn: 254629
|
|
|
|
|
|
|
|
|
|
| |
This works mostly fine but breaks some stage 1 builders when compiling
compiler-rt on i386. Revert for further investigation as I can't see an
obvious cause/fix.
This reverts commit r254577.
llvm-svn: 254586
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new algorithm remembers the uses encountered while walking backwards
until a matching def is found. Contrary to the previous version this:
- Works without LiveIntervals being available
- Allows to increase the precision to subregisters/lanemasks
(not used for now)
The changes in the AMDGPU tests are necessary because the R600 scheduler
is not stable with respect to the order of nodes in the ready queues.
Differential Revision: http://reviews.llvm.org/D9068
llvm-svn: 254577
|
|
|
|
| |
llvm-svn: 254575
|
|
|
|
|
|
| |
No functionality change is intended.
llvm-svn: 254562
|
|
|
|
| |
llvm-svn: 254557
|
|
|
|
|
|
|
|
|
| |
AggressiveAntiDepBreaker was renaming registers specified by the user
for inline assembly. While this will work for compiler-specified
registers, it won't work for user-specified registers, and at the time
this runs, I don't currently see a way to distinguish them.
llvm-svn: 254532
|
|
|
|
|
|
| |
Didn't break any tests, but did unnecessary extra work.
llvm-svn: 254529
|
|
|
|
|
|
|
|
|
| |
vector.resize() is significantly slower than memset in many STLs
and the cost of initializing these vectors is significant on targets
with many registers. Since we don't need the overhead of a vector,
use a simple unique_ptr instead.
llvm-svn: 254526
|
|
|
|
|
|
|
|
| |
The ARM ARM is clear that 128-bit loads are only guaranteed to have been atomic
if there has been a corresponding successful stxp. It's less clear for AArch32, so
I'm leaving that alone for now.
llvm-svn: 254524
|
|
|
|
|
|
|
|
| |
The bug is introduced in r254377 which failed some tests on ARM, where a new
probability is assigned to a successor but the provided BB may not be a
successor.
llvm-svn: 254463
|
|
|
|
| |
llvm-svn: 254453
|
|
|
|
| |
llvm-svn: 254445
|
|
|
|
| |
llvm-svn: 254442
|
|
|
|
|
|
|
|
|
| |
Cost calculation for vector GEP failed with due to invalid cast to GEP index operand.
The bug is fixed, added a test.
http://reviews.llvm.org/D14976
llvm-svn: 254408
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The @llvm.get.dynamic.area.offset.* intrinsic family is used to get the offset
from native stack pointer to the address of the most recent dynamic alloca on
the caller's stack. These intrinsics are intendend for use in combination with
@llvm.stacksave and @llvm.restore to get a pointer to the most recent dynamic
alloca. This is useful, for example, for AddressSanitizer's stack unpoisoning
routines.
Patch by Max Ostapenko.
Differential Revision: http://reviews.llvm.org/D14983
llvm-svn: 254404
|
|
|
|
|
|
|
|
|
|
| |
Previously it is not allowed for each MBB to have successors with both known and
unknown probabilities. However, this may be too strict as at this stage we could
not always guarantee that. It is better to remove this restriction now, and I
will work on validating MBB's successors' probabilities first (for example,
check if the sum is approximate one).
llvm-svn: 254402
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
interfaces, and update all uses of old interfaces.
(This is the second attempt to submit this patch. The first caused two assertion
failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254377
|
|
|
|
| |
llvm-svn: 254372
|
|
|
|
|
|
|
| |
Nobody was checking the returnvalue of recede()/advance() so we can
simply replace this code with asserts.
llvm-svn: 254371
|
|
|
|
|
|
|
| |
This is in preparation to expose the RegisterOperands class as
RegisterPressure API.
llvm-svn: 254368
|
|
|
|
|
|
|
|
|
|
| |
probability-based interfaces, and update all uses of old interfaces."
and the follow-up r254356: "Fix a bug in MachineBlockPlacement that may cause assertion failure during BranchProbability construction."
Asserts were firing in Chromium builds. See PR25687.
llvm-svn: 254366
|
|
|
|
|
|
|
|
| |
BranchProbability construction.
The root cause is the rounding behavior in BranchProbability construction. We may consider to use truncation instead in the future.
llvm-svn: 254356
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SDAG currently can emit debug location for function parameters when
an llvm.dbg.declare points to either a function argument SSA temp,
or to an AllocaInst. This change extends this logic by adding a
fallback case when neither of the above is true.
This is required for SafeStack, which may copy the contents of a
byval function argument into something that is not an alloca, and
then describe the target as the new location of the said argument.
llvm-svn: 254352
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
interfaces, and update all uses of old interfaces.
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254348
|
|
|
|
|
|
|
|
| |
This is primarily useful for debugging optnone v. ISel issues.
Differential Revision: http://reviews.llvm.org/D14792
llvm-svn: 254335
|
|
|
|
| |
llvm-svn: 254260
|
|
|
|
| |
llvm-svn: 254242
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements dynamic realignment of stack objects for targets
with a non-realigned stack pointer. Behaviour in FunctionLoweringInfo
is changed so that for a target that has StackRealignable set to
false, over-aligned static allocas are considered to be variable-sized
objects and are handled with DYNAMIC_STACKALLOC nodes.
It would be good to group aligned allocas into a single big alloca as
an optimization, but this is yet todo.
SystemZ benefits from this, due to its stack frame layout.
New tests SystemZ/alloca-03.ll for aligned allocas, and
SystemZ/alloca-04.ll for "no-realign-stack" attribute on functions.
Review and help from Ulrich Weigand and Hal Finkel.
llvm-svn: 254227
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Many target lowerings copy-paste the code to test SDValues for known constants.
This code can instead be shared in SelectionDAG.cpp, and reused in the targets.
Reviewers: MatzeB, andreadb, tstellarAMD
Subscribers: arsenm, jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D14945
llvm-svn: 254085
|
|
|
|
|
|
|
|
|
|
| |
to a simple type when lowering a truncating store of a vector type. In this
case for an EVT we'll return Expand as we should in all of the cases anyhow.
The testcase triggered at the one in VectorLegalizer::LegalizeOp, inspection
found the rest.
llvm-svn: 254061
|
|
|
|
|
|
|
|
|
|
| |
reserved physical registers
Patch by Nick Johnson <Nicholas.Paul.Johnson@deshawresearch.com>
Differential Revision: http://reviews.llvm.org/D14875
llvm-svn: 254012
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes.
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights.
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This the second patch above. In this patch SelectionDAG starts to use
probability-based interfaces in MBB to add successors but other MC passes are
still using weight-based interfaces. Therefore, we need to maintain correct
weight list in MBB even when probability-based interfaces are used. This is
done by updating weight list in probability-based interfaces by treating the
numerator of probabilities as weights. This change affects many test cases
that check successor weight values. I will update those test cases once this
patch looks good to you.
Differential revision: http://reviews.llvm.org/D14361
llvm-svn: 253965
|
|
|
|
|
|
| |
Switch dump()/print() method definitions to LLVM_DUMP_METHOD instead.
llvm-svn: 253945
|
|
|
|
|
|
|
|
| |
EH pad.
Differential Revision: http://reviews.llvm.org/D14842
llvm-svn: 253902
|
|
|
|
| |
llvm-svn: 253823
|
|
|
|
|
|
|
|
| |
Duplicate a few common definitions between DFAPacketizer.cpp and
DFAPacketizerEmitter.cpp to avoid including files from CodeGen
in TableGen.
llvm-svn: 253820
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Extended DFA tablegen to:
- added "-debug-only dfa-emitter" support to llvm-tblgen
- defined CVI_PIPE* resources for the V60 vector coprocessor
- allow specification of multiple required resources
- supports ANDs of ORs
- e.g. [SLOT2, SLOT3], [CVI_MPY0, CVI_MPY1] means:
(SLOT2 OR SLOT3) AND (CVI_MPY0 OR CVI_MPY1)
- added support for combo resources
- allows specifying ORs of ANDs
- e.g. [CVI_XLSHF, CVI_MPY01] means:
(CVI_XLANE AND CVI_SHIFT) OR (CVI_MPY0 AND CVI_MPY1)
- increased DFA input size from 32-bit to 64-bit
- allows for a maximum of 4 AND'ed terms of 16 resources
- supported expressions now include:
expression => term [AND term] [AND term] [AND term]
term => resource [OR resource]*
resource => one_resource | combo_resource
combo_resource => (one_resource [AND one_resource]*)
Author: Dan Palermo <dpalermo@codeaurora.org>
kparzysz: Verified AMDGPU codegen to be unchanged on all llc
tests, except those dealing with instruction encodings.
Reapply the previous patch, this time without circular dependencies.
llvm-svn: 253793
|
|
|
|
| |
llvm-svn: 253791
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Extended DFA tablegen to:
- added "-debug-only dfa-emitter" support to llvm-tblgen
- defined CVI_PIPE* resources for the V60 vector coprocessor
- allow specification of multiple required resources
- supports ANDs of ORs
- e.g. [SLOT2, SLOT3], [CVI_MPY0, CVI_MPY1] means:
(SLOT2 OR SLOT3) AND (CVI_MPY0 OR CVI_MPY1)
- added support for combo resources
- allows specifying ORs of ANDs
- e.g. [CVI_XLSHF, CVI_MPY01] means:
(CVI_XLANE AND CVI_SHIFT) OR (CVI_MPY0 AND CVI_MPY1)
- increased DFA input size from 32-bit to 64-bit
- allows for a maximum of 4 AND'ed terms of 16 resources
- supported expressions now include:
expression => term [AND term] [AND term] [AND term]
term => resource [OR resource]*
resource => one_resource | combo_resource
combo_resource => (one_resource [AND one_resource]*)
Author: Dan Palermo <dpalermo@codeaurora.org>
kparzysz: Verified AMDGPU codegen to be unchanged on all llc
tests, except those dealing with instruction encodings.
llvm-svn: 253790
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When MergeConsecutiveStores() combines two loads and two stores into
wider loads and stores, the chain users of both of the original loads
must be transfered to the new load, because it may be that a chain
user only depends on one of the loads.
New test case: test/CodeGen/SystemZ/dag-combine-01.ll
Reviewed by James Y Knight.
Bugzilla: https://llvm.org/bugs/show_bug.cgi?id=25310#c6
llvm-svn: 253779
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Add and instructions immediately after loads that only have their low
bits used, assuming that the (and (load x) c) will be matched as a
extload and the ands/truncs fed by the extload will be removed by isel.
Reviewers: mcrosier, qcolombet, ab
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14584
llvm-svn: 253722
|
|
|
|
|
|
|
|
| |
The included test only checks for a compiler crash for now. Several people are
facing this issue, so we first resolve the crash, and will increase shrinkwrap's
coverage later in a follow-up patch.
llvm-svn: 253718
|
|
|
|
|
|
|
|
| |
with it.
Sorry.
llvm-svn: 253663
|
|
|
|
|
|
|
|
| |
clang-cmake-mips failures.
Sorry for the noise.
llvm-svn: 253662
|
|
|
|
|
|
|
|
|
|
| |
This adds a new API, LTOCodeGenerator::setFileType, to choose the output file
format for LTO CodeGen. A corresponding change to use this new API from
llvm-lto and a test case is coming in a separate commit.
Differential Revision: http://reviews.llvm.org/D14554
llvm-svn: 253622
|
|
|
|
|
|
|
|
|
|
| |
Now that the register allocator knows about the barriers on funclet
entry and exit, testing has shown that this is unnecessary.
We still demote PHIs on unsplittable blocks due to the differences
between the IR CFG and the Machine CFG.
llvm-svn: 253619
|
|
|
|
|
|
| |
http://reviews.llvm.org/D14719
llvm-svn: 253600
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is another step towards allowing SimplifyCFG to speculate harder, but then have
CGP clean things up if the target doesn't like it.
Previous patches in this series:
http://reviews.llvm.org/D12882
http://reviews.llvm.org/D13297
D13297 should catch most expensive ops, but speculation of cttz/ctlz requires special
handling because of weirdness in the intrinsic definition for handling a zero input
(that definition can probably be blamed on x86).
For example, if we have the usual speculated-by-select expensive op pattern like this:
%tobool = icmp eq i64 %A, 0
%0 = tail call i64 @llvm.cttz.i64(i64 %A, i1 true) ; is_zero_undef == true
%cond = select i1 %tobool, i64 64, i64 %0
ret i64 %cond
There's an instcombine that will turn it into:
%0 = tail call i64 @llvm.cttz.i64(i64 %A, i1 false) ; is_zero_undef == false
This CGP patch is looking for that case and despeculating it back into:
entry:
%tobool = icmp eq i64 %A, 0
br i1 %tobool, label %cond.end, label %cond.true
cond.true:
%0 = tail call i64 @llvm.cttz.i64(i64 %A, i1 true) ; is_zero_undef == true
br label %cond.end
cond.end:
%cond = phi i64 [ %0, %cond.true ], [ 64, %entry ]
ret i64 %cond
This unfortunately may lead to poorer codegen (see the changes in the existing x86 test),
but if we increase speculation in SimplifyCFG (the next step in this patch series), then
we should avoid those kinds of cases in the first place.
The need for this patch was originally mentioned here:
http://reviews.llvm.org/D7506
with follow-up here:
http://reviews.llvm.org/D7554
Differential Revision: http://reviews.llvm.org/D14630
llvm-svn: 253573
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In particular, this makes the code for 64-bit compares on 32-bit targets
much more efficient.
Example:
define i32 @test_slt(i64 %a, i64 %b) {
entry:
%cmp = icmp slt i64 %a, %b
br i1 %cmp, label %bb1, label %bb2
bb1:
ret i32 1
bb2:
ret i32 2
}
Before this patch:
test_slt:
movl 4(%esp), %eax
movl 8(%esp), %ecx
cmpl 12(%esp), %eax
setae %al
cmpl 16(%esp), %ecx
setge %cl
je .LBB2_2
movb %cl, %al
.LBB2_2:
testb %al, %al
jne .LBB2_4
movl $1, %eax
retl
.LBB2_4:
movl $2, %eax
retl
After this patch:
test_slt:
movl 4(%esp), %eax
movl 8(%esp), %ecx
cmpl 12(%esp), %eax
sbbl 16(%esp), %ecx
jge .LBB1_2
movl $1, %eax
retl
.LBB1_2:
movl $2, %eax
retl
Differential Revision: http://reviews.llvm.org/D14496
llvm-svn: 253572
|