| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During selection DAG legalization, extractelement is replaced with a load
instruction. To do this, a temporary store to the stack is used unless an
existing store is found that can be re-used.
If re-using a store, the chain going out of the store must be replaced by
the one going out of the new load (this ensures that any stores that must
take place after the store happens after the load, else the value might
be overwritten before it is loaded).
The problem is, if the extractelement index is dependent on the store
replacing the chain will introduce a cycle in the selection DAG (the load
uses the index, and by replacing the chain we will make the index dependent
on the load).
To fix this, if the index is dependent on the store, the store is skipped.
This is conservative as we may end up creating an unnecessary extra store
to the stack. However, the situation is not expected to occur very often.
Differential Revision: http://reviews.llvm.org/D15330
llvm-svn: 255114
|
|
|
|
|
|
|
|
|
|
|
| |
DEBUG_VALUEs at each basic block and insert them. Reviewed and accepted at: http://reviews.llvm.org/D11933"
This reverts commit r255096.
Break the bots: http://lab.llvm.org:8080/green/job/clang-stage1-cmake-RA-incremental_check/16378/
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 255101
|
|
|
|
|
|
| |
DEBUG_VALUEs at each basic block and insert them. Reviewed and accepted at: http://reviews.llvm.org/D11933
llvm-svn: 255096
|
|
|
|
| |
llvm-svn: 255070
|
|
|
|
|
|
|
|
|
|
| |
llvm.dbg.value around"
This reverts commit r255055.
Breakage has been reported.
llvm-svn: 255063
|
|
|
|
| |
llvm-svn: 255055
|
|
|
|
|
|
|
|
|
|
| |
It's strange to duplicate the logic for emitting FP values into
emitGlobalConstantDataSequential, and it's even stranger that we end
up printing the verbose assembly comments differently between the two
paths. Just call into emitGlobalConstantFP rather than crudely
duplicating its logic.
llvm-svn: 254988
|
|
|
|
| |
llvm-svn: 254968
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patterns were missing for KNL target for <8 x i32>, <8 x float> masked load/store.
This intrinsic comes with all legal types:
<8 x float> @llvm.masked.load.v8f32(<8 x float>* %addr, i32 align, <8 x i1> %mask, <8 x float> %passThru),
but still requires lowering, because VMASKMOVPS, VMASKMOVDQU32 work with 512-bit vectors only.
All data operands should be widened to 512-bit vector.
The mask operand should be widened to v16i1 with zeroes.
Differential Revision: http://reviews.llvm.org/D15265
llvm-svn: 254909
|
|
|
|
|
|
| |
physical register arrays already use this typedef.
llvm-svn: 254843
|
|
|
|
| |
llvm-svn: 254837
|
|
|
|
|
|
|
| |
Now that ScheduleDAGInstrs doesn't need it anymore we can move the field
down the class hierarcy to ScheduleDAGMI.
llvm-svn: 254759
|
|
|
|
|
|
|
|
| |
This reverts commit r254694.
It broke bootstrap.
llvm-svn: 254700
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If we remove the MMOs from Load/Store instructions,
they are treated as volatile. This makes other optimization passes unhappy.
eg. Load/Store Optimization
So, it looks better to merge, not remove.
Reviewers: gberry, mcrosier
Subscribers: gberry, llvm-commits
Differential Revision: http://reviews.llvm.org/D14797
llvm-svn: 254694
|
|
|
|
| |
llvm-svn: 254686
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Re-comitting with a change that avoids undefined uses getting put into
the VRegUses list.
The new algorithm remembers the uses encountered while walking backwards
until a matching def is found. Contrary to the previous version this:
- Works without LiveIntervals being available
- Allows to increase the precision to subregisters/lanemasks
(not used for now)
The changes in the AMDGPU tests are necessary because the R600 scheduler
is not stable with respect to the order of nodes in the ready queues.
Differential Revision: http://reviews.llvm.org/D9068
llvm-svn: 254683
|
|
|
|
|
|
|
|
|
| |
This is a revised version of r254655 which uses a Printable wrapper
class to avoid ambiguous overload problems.
Differential Revision: http://reviews.llvm.org/D14348
llvm-svn: 254681
|
|
|
|
|
|
|
|
|
|
| |
CFI emits jump slots for indirect functions as a byte array
constant, and declares function-typed aliases to these constants.
This change fixes AsmPrinter to emit these aliases as function
symbols and not data symbols.
llvm-svn: 254674
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Code generation often exposes redundant physical register copies through
virtual registers such as:
%vreg = COPY %PHYSREG
...
%PHYSREG = COPY %vreg
There are cases where no intervening clobber of %PHYSREG occurs, and the
later copy could therefore be removed. In some cases this further allows
us to remove the initial copy.
This patch contains a motivating example which comes from the x86 build
of Chrome, specifically cc::ResourceProvider::UnlockForRead uses
libstdc++'s implementation of hash_map. That example has two tests live
at the same time, and after machine sinking LLVM has confused itself
enough and things spilling EFLAGS is a great idea even though it's
never restored and the comparison results are both live.
Before this patch we have:
DEC32m %RIP, 1, %noreg, <ga:@L>, %noreg, %EFLAGS<imp-def>
%vreg1<def> = COPY %EFLAGS; GR64:%vreg1
%EFLAGS<def> = COPY %vreg1; GR64:%vreg1
JNE_1 <BB#1>, %EFLAGS<imp-use>
Both copies are useless. This patch tries to eliminate the later copy in
a generic manner.
dec is especially confusing to LLVM when compared with sub.
I wrote this patch to treat all physical registers generically, but only
remove redundant copies of non-allocatable physical registers because
the allocatable ones caused issues (e.g. when calling conventions weren't
properly modeled) and should be handled later by the register allocator
anyways.
The following tests used to failed when the patch also replaced allocatable
registers:
CodeGen/X86/StackColoring.ll
CodeGen/X86/avx512-calling-conv.ll
CodeGen/X86/copy-propagation.ll
CodeGen/X86/inline-asm-fpstack.ll
CodeGen/X86/musttail-varargs.ll
CodeGen/X86/pop-stack-cleanup.ll
CodeGen/X86/preserve_mostcc64.ll
CodeGen/X86/tailcallstack64.ll
CodeGen/X86/this-return-64.ll
This happens because COPY has other special meaning for e.g. dependency
breakage and x87 FP stack.
Note that all other backends' tests pass.
Reviewers: qcolombet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15157
llvm-svn: 254665
|
|
|
|
|
|
|
| |
Use APFloat APIs here Rather than manually type-punning through
unions.
llvm-svn: 254664
|
|
|
|
|
|
|
|
| |
This commit provoked "error C2593: 'operator <<' is ambiguous" on MSVC.
This reverts commit r254655.
llvm-svn: 254661
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows easier construction of print helpers. Example:
Printable PrintLaneMask(unsigned LaneMask) {
return Printable([LaneMask](raw_ostream &OS) {
OS << format("%08X", LaneMask);
});
}
// Usage:
OS << PrintLaneMask(Mask);
Differential Revision: http://reviews.llvm.org/D14348
llvm-svn: 254655
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Almost all these changes are conditioned and only apply to the new
x86-64 f128 type configuration, which will be enabled in a follow up
patch. They are required together to make new f128 work. If there is
any error, we should fix or revert them as a whole.
These changes should have no impact to current configurations.
* Relax type legalization checks to accept new f128 type configuration,
whose TypeAction is TypeSoftenFloat, not TypeLegal, but also has
TLI.isTypeLegal true.
* Relax GetSoftenedFloat to return in some cases f128 type SDValue,
which is TLI.isTypeLegal but not "softened" to i128 node.
* Allow customized FABS, FNEG, FCOPYSIGN on new f128 type configuration,
to generate optimized bitwise operators for libm functions.
* Enhance related Lower* functions to handle f128 type.
* Enhance DAGTypeLegalizer::run, SoftenFloatResult, and related functions
to keep new f128 type in register, and convert f128 operators to library calls.
* Fix Combiner, Emitter, Legalizer routines that did not handle f128 type.
* Add ExpandConstant to handle i128 constants, ExpandNode
to handle ISD::Constant node.
* Add one more parameter to getCommonSubClass and firstCommonClass,
to guarantee that returned common sub class will contain the specified
simple value type.
This extra parameter is used by EmitCopyFromReg in InstrEmitter.cpp.
* Fix infinite loop in getTypeLegalizationCost when f128 is the value type.
* Fix printOperand to handle null operand.
* Enhance ISD::BITCAST node to handle f128 constant.
* Expand new f128 type for BR_CC, SELECT_CC, SELECT, SETCC nodes.
* Enhance X86AsmPrinter to emit f128 values in comments.
Differential Revision: http://reviews.llvm.org/D15134
llvm-svn: 254653
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D14996
llvm-svn: 254629
|
|
|
|
|
|
|
|
|
|
| |
This works mostly fine but breaks some stage 1 builders when compiling
compiler-rt on i386. Revert for further investigation as I can't see an
obvious cause/fix.
This reverts commit r254577.
llvm-svn: 254586
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new algorithm remembers the uses encountered while walking backwards
until a matching def is found. Contrary to the previous version this:
- Works without LiveIntervals being available
- Allows to increase the precision to subregisters/lanemasks
(not used for now)
The changes in the AMDGPU tests are necessary because the R600 scheduler
is not stable with respect to the order of nodes in the ready queues.
Differential Revision: http://reviews.llvm.org/D9068
llvm-svn: 254577
|
|
|
|
| |
llvm-svn: 254575
|
|
|
|
|
|
| |
No functionality change is intended.
llvm-svn: 254562
|
|
|
|
| |
llvm-svn: 254557
|
|
|
|
|
|
|
|
|
| |
AggressiveAntiDepBreaker was renaming registers specified by the user
for inline assembly. While this will work for compiler-specified
registers, it won't work for user-specified registers, and at the time
this runs, I don't currently see a way to distinguish them.
llvm-svn: 254532
|
|
|
|
|
|
| |
Didn't break any tests, but did unnecessary extra work.
llvm-svn: 254529
|
|
|
|
|
|
|
|
|
| |
vector.resize() is significantly slower than memset in many STLs
and the cost of initializing these vectors is significant on targets
with many registers. Since we don't need the overhead of a vector,
use a simple unique_ptr instead.
llvm-svn: 254526
|
|
|
|
|
|
|
|
| |
The ARM ARM is clear that 128-bit loads are only guaranteed to have been atomic
if there has been a corresponding successful stxp. It's less clear for AArch32, so
I'm leaving that alone for now.
llvm-svn: 254524
|
|
|
|
|
|
|
|
| |
The bug is introduced in r254377 which failed some tests on ARM, where a new
probability is assigned to a successor but the provided BB may not be a
successor.
llvm-svn: 254463
|
|
|
|
| |
llvm-svn: 254453
|
|
|
|
| |
llvm-svn: 254445
|
|
|
|
| |
llvm-svn: 254442
|
|
|
|
|
|
|
|
|
| |
Cost calculation for vector GEP failed with due to invalid cast to GEP index operand.
The bug is fixed, added a test.
http://reviews.llvm.org/D14976
llvm-svn: 254408
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The @llvm.get.dynamic.area.offset.* intrinsic family is used to get the offset
from native stack pointer to the address of the most recent dynamic alloca on
the caller's stack. These intrinsics are intendend for use in combination with
@llvm.stacksave and @llvm.restore to get a pointer to the most recent dynamic
alloca. This is useful, for example, for AddressSanitizer's stack unpoisoning
routines.
Patch by Max Ostapenko.
Differential Revision: http://reviews.llvm.org/D14983
llvm-svn: 254404
|
|
|
|
|
|
|
|
|
|
| |
Previously it is not allowed for each MBB to have successors with both known and
unknown probabilities. However, this may be too strict as at this stage we could
not always guarantee that. It is better to remove this restriction now, and I
will work on validating MBB's successors' probabilities first (for example,
check if the sum is approximate one).
llvm-svn: 254402
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
interfaces, and update all uses of old interfaces.
(This is the second attempt to submit this patch. The first caused two assertion
failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254377
|
|
|
|
| |
llvm-svn: 254372
|
|
|
|
|
|
|
| |
Nobody was checking the returnvalue of recede()/advance() so we can
simply replace this code with asserts.
llvm-svn: 254371
|
|
|
|
|
|
|
| |
This is in preparation to expose the RegisterOperands class as
RegisterPressure API.
llvm-svn: 254368
|
|
|
|
|
|
|
|
|
|
| |
probability-based interfaces, and update all uses of old interfaces."
and the follow-up r254356: "Fix a bug in MachineBlockPlacement that may cause assertion failure during BranchProbability construction."
Asserts were firing in Chromium builds. See PR25687.
llvm-svn: 254366
|
|
|
|
|
|
|
|
| |
BranchProbability construction.
The root cause is the rounding behavior in BranchProbability construction. We may consider to use truncation instead in the future.
llvm-svn: 254356
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SDAG currently can emit debug location for function parameters when
an llvm.dbg.declare points to either a function argument SSA temp,
or to an AllocaInst. This change extends this logic by adding a
fallback case when neither of the above is true.
This is required for SafeStack, which may copy the contents of a
byval function argument into something that is not an alloca, and
then describe the target as the new location of the said argument.
llvm-svn: 254352
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
interfaces, and update all uses of old interfaces.
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254348
|
|
|
|
|
|
|
|
| |
This is primarily useful for debugging optnone v. ISel issues.
Differential Revision: http://reviews.llvm.org/D14792
llvm-svn: 254335
|
|
|
|
| |
llvm-svn: 254260
|