| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
computeKnownBits for all vector typed operations not just build_vector.
Fix AArch64 unit test that fails with the assertion added.
llvm-svn: 346437
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
FindBetterNeighborChains simulateanously improves the chain
dependencies of a chain of related stores avoiding the generation of
extra token factors. For chains longer than the GatherAllAliasDepths,
stores further down in the chain will necessarily fail, a potentially
significant waste and preventing otherwise trivial parallelization.
This patch directly parallelize the chains of stores before improving
each store. This generally improves DAG-level parallelism.
Reviewers: courbet, spatel, RKSimon, bogner, efriedma, craig.topper, rnk
Subscribers: sdardis, javed.absar, hiraditya, jrtc27, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D53552
llvm-svn: 346432
|
|
|
|
|
|
|
|
|
|
| |
range lists
Turns out knowing more than just the base address might be useful -
specifically a future change to respect a DICompileUnit flag for the use
of base address specifiers in DWARF < 5.
llvm-svn: 346380
|
|
|
|
|
|
|
|
|
|
|
| |
If a block doesn't have any ranges of adjacent legal instructions, then it
can't have outlining candidates. There's no point in mapping legal isntructions
in situations like this.
I noticed this reduces the size of the suffix tree in sqlite3 for AArch64 at
-Oz by about 3%.
llvm-svn: 346379
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I noticed that there are lots of basic blocks that don't have enough legal
instructions in them to warrant outlining. We can skip mapping these entirely.
In sqlite3, compiled for AArch64 at -Oz, this results in a 10% reduction of
the total nodes in the suffix tree. These nodes can never be part of a
repeated substring, and so they don't impact the result at all.
Before this, there were 62128 nodes in the tree for sqlite3. After this, there
are 56457 nodes.
llvm-svn: 346373
|
|
|
|
|
|
|
|
|
|
| |
This is only used for calculating ConcatLen. This isn't necessary,
since it's easily derived from the traversal setting suffix indices.
Remove that. Rename CurrIdx to CurrNodeLen to better describe what's
going on.
llvm-svn: 346349
|
|
|
|
|
|
|
|
|
| |
This takes the traversal methods introduced in r346269 and adapts them
into an iterator. This allows the outliner to iterate over repeated substrings
within the suffix tree directly without having to initially find all of the
substrings and then iterate over them after you've found them.
llvm-svn: 346345
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NFC-ish. This doesn't change the behaviour of the outliner, but does make sure
that you won't end up with say
OUTLINED_FUNCTION_2:
...
ret
OUTLINED_FUNCTION_248:
...
ret
as the only outlined functions in your module. Those should really be
OUTLINED_FUNCTION_0:
...
ret
OUTLINED_FUNCTION_1:
...
ret
If we produce outlined functions, they probably should have sequential numbers
attached to them. This makes it a bit easier+stable to write outliner tests.
The point of this is to move towards a bit more stability in outlined function
names. By doing this, we at least don't rely on the traversal order of the
suffix tree. Instead, we rely on the order of the candidate list, which is
*far* more consistent. The candidate list is ordered by the end indices of
candidates, so we're more likely to get a stable ordering. This is still
susceptible to changes in the cost model though (like, if we suddenly find new
candidates, for example).
llvm-svn: 346340
|
|
|
|
| |
llvm-svn: 346332
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds the llvm-side support for post-inlining evaluation of the
__builtin_constant_p GCC intrinsic.
Also fixed SCCPSolver::visitCallSite to not blow up when seeing a call
to a function where canConstantFoldTo returns true, and one of the
arguments is a struct.
Updated from patch initially by Janusz Sobczak.
Differential Revision: https://reviews.llvm.org/D4276
llvm-svn: 346322
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Set `LiveReg::PhysReg` to zero when freeing a register instead of
removing it from the entry from `LiveRegMap`. This way no iterators get
invalidated and we can avoid passing around and updating iterators all
over the place.
This does not change any allocator decisions. It is not completely NFC
because the arbitrary iteration order through `LiveRegMap` in
`spillAll()` changes so we may get a different order in those spill
sequences (the amount of spills does not change).
This is in preparation of https://reviews.llvm.org/D52010.
llvm-svn: 346298
|
|
|
|
|
|
| |
This is in preparation of https://reviews.llvm.org/D52010.
llvm-svn: 346297
|
|
|
|
|
|
| |
This is in preparation of https://reviews.llvm.org/D52010.
llvm-svn: 346296
|
|
|
|
|
|
| |
This is in preparation of https://reviews.llvm.org/D52010.
llvm-svn: 346289
|
|
|
|
|
|
| |
This is in preparation of https://reviews.llvm.org/D52010.
llvm-svn: 346288
|
|
|
|
|
|
|
|
| |
The metric does not return the number of remaining (or inserted) copies
but the number of copies that were coalesced. Pick a more descriptive
name.
llvm-svn: 346287
|
|
|
|
|
|
| |
After changing the way we find candidates in r346269, this is no longer used.
llvm-svn: 346275
|
|
|
|
|
|
|
| |
After changing the way we find repeated substrings in r346269, this
field is no longer used by anything, so it can be removed.
llvm-svn: 346274
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of iterating over the leaves to find repeated substrings, and walking
collecting leaf children when we don't necessarily need them, let's just
calculate what we need and iterate over that.
By doing this, we don't have to save every leaf. It's easier to read the code
too and understand what's going on.
The goal here, at the end of the day, is to set up to allow us to do something
like
for (RepeatedSubstring &RS : ST) {
... do stuff with RS ...
}
Which would let us perform the cost model stuff and the repeated substring
query at the same time.
llvm-svn: 346269
|
|
|
|
|
|
|
|
| |
Change the type in a couple of lists and sets that only store physical
registers from unsigned to MCPhysRegs. The later is only 16bits and
saves us a bit of memory.
llvm-svn: 346254
|
|
|
|
|
|
|
|
|
|
| |
MachineFunction can only be used in code using lib/CodeGen, hence we
can keep a more specific reference to LLVMTargetMachine rather than just
TargetMachine around.
Do the same for references in ScheduleDAG and RegUsageInfoCollector.
llvm-svn: 346183
|
|
|
|
|
|
|
|
| |
MachineModuleInfo can only be used in code using lib/CodeGen, hence we
can keep a more specific reference to LLVMTargetMachine rather than just
TargetMachine around.
llvm-svn: 346182
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D53411
llvm-svn: 346141
|
|
|
|
|
|
|
|
| |
support. NFCI.
Prior to initial work to add vector expansion support, remove assumptions that we're working on scalar types.
llvm-svn: 346139
|
|
|
|
|
|
|
|
| |
correctly between LegalTypes and LegalOperations.
The original code avoided creating a zero vector after type legalization, but if we're after type legalization the type we have is legal. The real hazard we need to avoid is creating a build vector after op legalization. tryFoldToZero takes care of checking for this.
llvm-svn: 346119
|
|
|
|
| |
llvm-svn: 346118
|
|
|
|
|
|
| |
This makes this code consistent with the nearly identical code in visitZERO_EXTEND.
llvm-svn: 346090
|
|
|
|
|
|
|
|
|
|
| |
nodes. Move asserts into getNode.
These methods were just wrappers around getNode with additional asserts (identical and repeated 3 times). But getNode already has a switch that can be used to hold these asserts that allows them to be shared for all 3 opcodes. This also enables checking on the places that create these nodes without using the wrappers.
The rest of the patch is just changing all callers to use getNode directly.
llvm-svn: 346087
|
|
|
|
|
|
|
|
|
|
|
| |
Use MachineFrameInfo's OffsetAdjustment field to pass this information
from the target to CodeViewDebug.cpp. The X86 backend doesn't use it for
any other purpose.
This fixes PR38857 in the case where there is a non-aligned quantity of
CSRs and a non-aligned quantity of locals.
llvm-svn: 346062
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
types are legal with AVX1
We already have custom lowering for the AVX case in LegalizeVectorOps. So its better to keep the regular extend op around as long as possible.
I had to qualify one place in DAG combine that created illegal vector extending load operations. This change by itself had no effect on any tests which is why its included here.
I've made a few cleanups to the custom lowering. The sign extend code no longer creates an identity shuffle with undef elements. The zero extend code now emits a zero_extend_vector_inreg instead of an unpckl with a zero vector.
For the high half of the custom lowering of zero_extend/any_extend, we're now using an unpckh with a zero vector or undef. Previously we used used a pshufd to move the upper 64-bits to the lower 64-bits and then used a zero_extend_vector_inreg. I think the zero vector should require less execution resources and be smaller code size.
Differential Revision: https://reviews.llvm.org/D54024
llvm-svn: 346043
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As reported in PR38952, postra-machine-sink relies on DBG_VALUE insns being
adjacent to the def of the register that they reference. This is not always
true, leading to register copies being sunk but not the associated DBG_VALUEs,
which gives the debugger a bad variable location.
This patch collects DBG_VALUEs as we walk through a BB looking for copies to
sink, then passes them down to performSink. Compile-time impact should be
negligable.
Differential Revision: https://reviews.llvm.org/D53992
llvm-svn: 345996
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
vectorizers instead (PR35732)
reduceBuildVecConvertToConvertBuildVec vectorizes int2float in the DAGCombiner, which means that even if the LV/SLP has decided to keep scalar code using the cost models, this will override this.
While there are cases where vectorization is necessary in the DAG (mainly due to legalization artefacts), I don't think this is the case here, we should assume that the vectorizers know what they are doing.
Differential Revision: https://reviews.llvm.org/D53712
llvm-svn: 345964
|
|
|
|
|
|
|
|
|
|
| |
- Make some TargetPassConfig methods that just check whether options have
been set static.
- Shuffle code in LLVMTargetMachine around so addPassesToGenerateCode
only deals with TargetPassConfig now (but not with MCContext or the
creation of MachineModuleInfo)
llvm-svn: 345918
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This patch adds Intrinsic.sponentry. This intrinsic is required to correctly support setjmp for AArch64 Windows platform.
Patch by: Yin Ma (yinma@codeaurora.org)
Reviewers: mgrang, ssijaric, eli.friedman, TomTan, mstorsjo, rnk, compnerd, efriedma
Reviewed By: efriedma
Subscribers: efriedma, javed.absar, kristof.beyls, chrib, llvm-commits
Differential Revision: https://reviews.llvm.org/D53996
llvm-svn: 345909
|
|
|
|
|
|
|
|
| |
vectors. Remove FIXME.
I'm having trouble creating a test case for the ISD::TRUNCATE part of this that shows any codegen differences. But I was able to test the setcc path which is what the test changes here cover.
llvm-svn: 345908
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instruction mapping in the outliner uses "illegal numbers" to signify that
something can't ever be part of an outlining candidate. This means that the
number is unique and can't be part of any repeated substring.
Because each of these is unique, we can use a single unique number to represent
a range of things we can't outline.
The outliner tries to leverage this using a flag which is set in an MBB when
the previous instruction we tried to map was "illegal". This patch improves
that logic to work across MBBs. As a bonus, this also simplifies the mapping
logic somewhat.
This also updates the machine-outliner-remarks test, which was impacted by the
order of Candidates on an OutlinedFunction changing. This order isn't
guaranteed, so I added a FIXME to fix that in a follow-up. The order of
Candidates on an OutlinedFunction isn't important, so this still is NFC.
llvm-svn: 345906
|
|
|
|
|
|
|
|
| |
This patch adds support for expanding vector CTPOP instructions and removes the x86 'bitmath' lowering which replicates the same expansion.
Differential Revision: https://reviews.llvm.org/D53258
llvm-svn: 345869
|
|
|
|
|
|
| |
This reverts commit 585b6667b4712e3c7f32401e929855b3313b4ff2.
llvm-svn: 345863
|
|
|
|
|
|
|
|
|
|
|
|
| |
narrow a vector op (PR39511)
The test causes a crash because we were trying to extract v4f32 to v3f32, and the
narrowing factor was then 4/3 = 1 producing a bogus narrow type.
This should fix:
https://bugs.llvm.org/show_bug.cgi?id=39511
llvm-svn: 345842
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The TypeIndex used by cl.exe is 0x103, which indicates a SimpleTypeMode
of NearPointer (note the absence of the bitness, normally pointers use a
mode of NearPointer32 or NearPointer64) and a SimpleTypeKind of void.
So this is basically a void*, but without a specified size, which makes
sense given how std::nullptr_t is defined.
clang-cl was actually not emitting *anything* for this. Instead, when we
encountered std::nullptr_t in a DIType, we would actually just emit a
TypeIndex of 0, which is obviously wrong.
std::nullptr_t in DWARF is represented as a DW_TAG_unspecified_type with
a name of "decltype(nullptr)", so we add that logic along with a test,
as well as an update to the dumping code so that we no longer print
void* when dumping 0x103 (which would previously treat Void/NearPointer
no differently than Void/NearPointer64).
Differential Revision: https://reviews.llvm.org/D53957
llvm-svn: 345811
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This patch adds Intrinsic.sponentry. This intrinsic is required to correctly support setjmp for AArch64 Windows platform.
Reviewers: mgrang, TomTan, rnk, compnerd, mstorsjo, efriedma
Reviewed By: efriedma
Subscribers: majnemer, chrib, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D53673
llvm-svn: 345791
|
|
|
|
|
|
|
|
|
|
|
|
| |
SimplifySetCC could shrink a load without checking for
profitability or legality of such shink with a target.
Added checks to prevent shrinking of aligned scalar loads
in AMDGPU below dword as scalar engine does not support it.
Differential Revision: https://reviews.llvm.org/D53846
llvm-svn: 345778
|
|
|
|
|
|
|
|
|
| |
lowerRangeToAssertZExt currently relies on something like EarlyCSE having
eliminated the constant range [0,1). At -O0 this leads to an assert.
Differential Revision: https://reviews.llvm.org/D53888
llvm-svn: 345770
|
|
|
|
|
|
| |
builds. NFC
llvm-svn: 345761
|
|
|
|
| |
llvm-svn: 345758
|
|
|
|
|
|
| |
We should be using the getShiftAmountTy value type for shift amounts.
llvm-svn: 345756
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Also fix a couple bugs where DILocations are lost. EntryBuilder wasn't passing
on debug locations for PHI's, constants, GLOBAL_VALUE, etc.
Reviewers: aprantl, vsk, bogner, aditya_nandakumar, volkan, rtereshin, aemerson
Reviewed By: aemerson
Subscribers: aemerson, rovka, kristof.beyls, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D53740
llvm-svn: 345743
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch DbgInfoAvailable was set to true in
DwarfDebug::beginModule() or CodeViewDebug::CodeViewDebug(). This made
MIR testing weird since passes would suddenly stop dealing with debug
info just because we stopped the pipeline before the debug printers.
This patch changes the logic to initialize DbgInfoAvailable based on the
fact that debug_compile_units exist in the llvm Module. The debug
printers may then override it with false in case of debug printing being
disabled.
Differential Revision: https://reviews.llvm.org/D53885
llvm-svn: 345740
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: RKSimon, spatel, javed.absar, craig.topper, t.p.northover
Reviewed By: RKSimon
Subscribers: craig.topper, llvm-commits
Differential Revision: https://reviews.llvm.org/D52504
llvm-svn: 345721
|
|
|
|
|
|
|
|
| |
This is modeled after C++17 std::empty().
Differential Revision: https://reviews.llvm.org/D53909
llvm-svn: 345679
|