| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
| |
into buildLocationList(). By keeping the list of Values sorted,
DebugLocEntry::Merge can also merge multi-piece entries.
llvm-svn: 215384
|
| |
|
|
|
|
|
|
|
|
|
|
| |
buildLocationLists easier to read.
The previous implementation conflated the merging of individual pieces
and the merging of entire DebugLocEntries.
By splitting this functionality into two separate functions the intention
of the code should be clearer.
llvm-svn: 215383
|
| |
|
|
|
|
|
| |
This makes the function type independent of the in-line size
of LocalMIs.
llvm-svn: 215356
|
| |
|
|
| |
llvm-svn: 215355
|
| |
|
|
|
|
|
|
| |
be propagated to all its users, and this propagation could increase the
probability of finding common subexpressions. If the COPY has only one user,
the COPY itself can be removed.
llvm-svn: 215344
|
| |
|
|
|
|
|
|
|
| |
(r215340)
This time, also update the function that receives a reference to the SmallPtrSet as
a parameter.
llvm-svn: 215342
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
That broke the build:
/data/buildslave/clang-amd64-freebsd/src-llvm/lib/CodeGen/PeepholeOptimizer.cpp:729:46: error: non-const lvalue reference to type 'SmallPtrSet<[...], 8>' cannot bind to a value of unrelated type 'SmallPtrSet<[...], 16>'
Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
^~~~~~~~
/data/buildslave/clang-amd64-freebsd/src-llvm/lib/CodeGen/PeepholeOptimizer.cpp:265:49: note: passing argument to parameter 'LocalMIs' here
SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
^
llvm-svn: 215341
|
| |
|
|
|
|
| |
During a Clang build, the median size of this was 9
llvm-svn: 215340
|
| |
|
|
|
|
| |
This SmallVector's median size during a Clang build was 7.
llvm-svn: 215338
|
| |
|
|
|
|
| |
In a Clang bootstrap, the size of this vector was always 6.
llvm-svn: 215335
|
| |
|
|
|
|
| |
During a Clang bootstrap, it seems this SmallVector always contains 3 elements.
llvm-svn: 215334
|
| |
|
|
|
|
|
|
|
| |
Follow up to r214266. Add missing case in ScalarizeVectorResult() for
cttz_zero_undef.
Differential Revision: http://reviews.llvm.org/D4813
llvm-svn: 215330
|
| |
|
|
|
|
| |
Use a range based for loop instead of manual iteration. NFC.
llvm-svn: 215287
|
| |
|
|
|
|
|
|
|
| |
the assertion that no argument variable is overwritten by subsequent argument variables.
This turned up a bug in clang where arguments were emitted with
duplicate argument numbers (see r215227).
llvm-svn: 215228
|
| |
|
|
|
|
|
|
| |
floating point exceptions, added use of flag to fold potentially exception
raising floating point math in selection DAG. No functionality change, as
targets have to explicitly ask for this behavior and none does today.
llvm-svn: 215222
|
| |
|
|
|
|
| |
test in the test-suite while I investigate further.
llvm-svn: 215217
|
| |
|
|
| |
llvm-svn: 215209
|
| |
|
|
|
|
|
|
| |
Patch provided by Andrey Kuharev.
Sorry, r170537 was obviously wrong.
llvm-svn: 215190
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
__stack_chk_guard.
Handle the case where the pointer operand of the load instruction that loads the
stack guard is not a global variable but instead a bitcast.
%StackGuard = load i8** bitcast (i64** @__stack_chk_guard to i8**)
call void @llvm.stackprotector(i8* %StackGuard, i8** %StackGuardSlot)
Original test case provided by Ana Pazos.
This fixes PR20558.
llvm-svn: 215167
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
functions.
Due to an unnecessary special case, inlined arguments that happened to
be from the same function as they were inlined into were misclassified
as non-inline arguments and would overwrite the non-inlined arguments.
Assert that we never overwrite a function's arguments, and stop
misclassifying inlined arguments as non-inline arguments to fix this
issue.
Excuse the rather crappy test case - handcrafted IR might do better, or
someone who understands better how to tickle the inliner to create a
recursive inlining situation like this (though it may also be necessary
to tickle the variable in a particular way to cause it to be recorded in
the MMI side table and go down this particular path for location
information).
llvm-svn: 215157
|
| |
|
|
|
|
|
|
|
|
|
| |
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
|
| |
|
|
| |
llvm-svn: 215153
|
| |
|
|
|
|
|
|
|
|
| |
Re-commit of r214832,r21469 with a work-around that
avoids the previous problem with gcc build compilers
The work-around is to use SmallVector instead of ArrayRef
of basic blocks in preservesResourceLen()/MachineCombiner.cpp
llvm-svn: 215151
|
| |
|
|
| |
llvm-svn: 215138
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
BranchFolderPass was not correctly setting the basic block branch weights when
tail-merging created or merged blocks. This patch recomutes the weights of
tail-merged blocks using the following formula:
branch_weight(merged block to successor j) =
sum(block_frequency(bb) * branch_probability(bb -> j))
bb is a block that is in the set of merged blocks.
<rdar://problem/16256423>
llvm-svn: 215135
|
| |
|
|
|
|
|
|
|
| |
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
|
| |
|
|
|
|
|
|
|
|
|
| |
instructions within a function, lead to the function itself.""
This reverts commit r214761.
Revert while Reid investigates & provides a reproduction for an
assertion failure for this on Windows.
llvm-svn: 214999
|
| |
|
|
|
|
|
|
|
| |
to get the subtarget and that's accessible from the MachineFunction
now. This helps clear the way for smaller changes where we getting
a subtarget will require passing in a MachineFunction/Function as
well.
llvm-svn: 214988
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In r210492 the logic of calculateDbgValueHistory was changed to end
register variable live ranges at the end of MBB conditionally on
the fact that the register was or not clobbered by the function body.
This requires an initial scan of all the operands of the function
to collect all clobbered registers. In a second pass over all
instructions, we compare this set with the set of clobbered
registers for the current MachineInstruction. This modification
incurred a compilation time regression on some benchmarks: the
debug info emission phase takes ~10% more time.
While a small performance hit is unavoidable due to the initial
scan requirement, we can improve the situation by avoiding to
create too many temporary sets and just use lambdas to work directly
on the result of the initial scan.
Fixes <rdar://problem/17884104>
Patch by Frederic Riss!
llvm-svn: 214987
|
| |
|
|
|
|
|
|
|
| |
The handling of the epilogue is best expressed as an early exit and
there is no reason to look for register defs in DbgValue MIs.
Patch by Frederic Riss!
llvm-svn: 214986
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Otherwise we can end up with an argument frame size that is not a
multiple of stack slot size, which is very awkward.
This fixes PR20547, which was a bug in x86_64 Sys V vararg handling.
However, it's much easier to test this with x86 callee-cleanup
functions, which previously ended in "retl $6" instead of "retl $8".
This does affect behavior of all backends, but it presumably fixes the
same bug in all of them.
llvm-svn: 214980
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CriticalAntiDepBreaker
This patch addresses 2 FIXME comments that I added to CriticalAntiDepBreaker while fixing PR20020.
Initialize an MCSubRegIterator and an MCRegAliasIterator to include the self reg.
Assuming that works as advertised, there should be functional difference with this patch, just less code.
Also, remove the associated asserts - we're setting those values just before, so the asserts don't do anything meaningful.
Differential Revision: http://reviews.llvm.org/D4566
llvm-svn: 214973
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
least one range.
This was coming in weird debug info that had variables (and hence
debug_locs) but was in GMLT mode (because it was missing the 13th field
of the compile_unit metadata) so no ranges were constructed. We should
always have at least one range for any CU with a debug_loc in it -
because the range should cover the debug_loc.
The assertion just ensures that the "!= 1" range case inside the
subsequent loop doesn't get entered for the case where there are no
ranges at all, which should never reach here in the first place.
llvm-svn: 214939
|
| |
|
|
|
|
|
|
|
|
| |
list itself, since it is constant across an entire list.
This simplifies construction and usage while making the data structure
smaller. It was a holdover from the days when we didn't have a separate
DebugLocList and all we had was a flat list of DebugLocEntries.
llvm-svn: 214933
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Allow vector fabs operations on bitcasted constant integer values to be optimized
in the same way that we already optimize scalar fabs.
So for code like this:
%bitcast = bitcast i64 18446744069414584320 to <2 x float> ; 0xFFFF_FFFF_0000_0000
%fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %bitcast)
%ret = bitcast <2 x float> %fabs to i64
Instead of generating something like this:
movabsq (constant pool loadi of mask for sign bits)
vmovq (move from integer register to vector/fp register)
vandps (mask off sign bits)
vmovq (move vector/fp register back to integer return register)
We should generate:
mov (put constant value in return register)
I have also removed a redundant clause in the first 'if' statement:
N0.getOperand(0).getValueType().isInteger()
is the same thing as:
IntVT.isInteger()
Testcases for x86 and ARM added to existing files that deal with vector fabs.
One existing testcase for x86 removed because it is no longer ideal.
For more background, please see:
http://reviews.llvm.org/D4770
And:
http://llvm.org/bugs/show_bug.cgi?id=20354
Differential Revision: http://reviews.llvm.org/D4785
llvm-svn: 214892
|
| |
|
|
|
|
|
|
| |
variables had DIEs, due to a failure on Darwin.
I'll work on a reduction and fix after this.
llvm-svn: 214880
|
| |
|
|
|
|
|
|
|
|
|
| |
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
|
| |
|
|
|
|
|
|
| |
to use register units instead of registers.
reviewed by Jakob Stoklund Olesen.
llvm-svn: 214798
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This code is completely wrong. It is also dead, as if it were to *ever*
run, it would crash. Fortunately, after my work to the combiner, it is
at least *possible* to reach the code, and llvm-stress has found a test
case. Thanks to Patrick for reporting.
It would be really good if anyone who remembers how this code works and
what it was intended to do could add some more obvious test coverage
instead of my completely contrived and reduced test case. My test case
was so brittle I left a bread crumb comment in it to help the next
person to stumble on it and not know what it was actually testing for.
llvm-svn: 214785
|
| |
|
|
|
|
| |
information and update all callers. No functional change.
llvm-svn: 214781
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
instructions within a function, lead to the function itself."
Originally reverted in r213432 with flakey failures on an ASan self-host
build. After reduction it seems to be the same issue fixed in r213805
(ArgPromo + DebugInfo: Handle updating debug info over multiple
applications of argument promotion) and r213952 (by having
LiveDebugVariables strip dbg_value intrinsics in functions that are not
described by debug info). Though I cannot explain why this failure was
flakey...
llvm-svn: 214761
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
combines) until they are legal.
Doing it the old way could, when the stars align *just* right, cause
a node to get into the combine set prior to being legalized. Then, when
the same node showed up as an operand to another node later on (but not
so much later on that it had been deleted as dead) we would fail to add
it back to the worklist thinking it had already been combined. This
would in turn cause it to not be legalized. Fortunately, we can also
walk the operands looking for uncombined (and thus potentially
un-legalized) nodes late. It will still ensure that we walk all operands
of all nodes and send all of them through both the legalizer without
changes and the combiner at least once. (Which was the original goal of
this).
I have a test case for this bug, but it is terribly brittle. For
example, it will stop finding the bug the moment I enable the new
shuffle lowering. I don't yet have any test case that reliably exercises
this bug, and it isn't clear that it will be possible to craft one. It
is entirely possible that with the new shuffle lowering the two forms of
doing this are precisely equivalent. That doesn't mean we shouldn't take
the more conservative approach of insisting on things in the combined
set having survived the legalizer.
llvm-svn: 214673
|
| |
|
|
|
|
|
|
| |
GCC 4.8.2 objects to the tautological condition in the assert as the unsigned
value is guaranteed to be >= 0. Simplify the assertion by dropping the
tautological condition.
llvm-svn: 214671
|
| |
|
|
|
|
|
|
|
|
| |
This is intended to be the minimal change needed to fix PR20354 ( http://llvm.org/bugs/show_bug.cgi?id=20354 ). The check for a vector operation was wrong; we need to check that the fabs itself is not a vector operation.
This patch will not generate the optimal code. A constant pool load and 'and' op will be generated instead of just returning a value that we can calculate in advance (as we do for the scalar case). I've put a 'TODO' comment for that here and expect to have that patch ready soon.
There is a very similar optimization that we can do in visitFNEG, so I've put another 'TODO' there and expect to have another patch for that too.
llvm-svn: 214670
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
sequence - target independent framework
When the DAGcombiner selects instruction sequences
it could increase the critical path or resource len.
For example, on arm64 there are multiply-accumulate instructions (madd,
msub). If e.g. the equivalent multiply-add sequence is not on the
crictial path it makes sense to select it instead of the combined,
single accumulate instruction (madd/msub). The reason is that the
conversion from add+mul to the madd could lengthen the critical path
by the latency of the multiply.
But the DAGCombiner would always combine and select the madd/msub
instruction.
This patch uses machine trace metrics to estimate critical path length
and resource length of an original instruction sequence vs a combined
instruction sequence and picks the faster code based on its estimates.
This patch only commits the target independent framework that evaluates
and selects code sequences. The machine instruction combiner is turned
off for all targets and expected to evolve over time by gradually
handling DAGCombiner pattern in the target specific code.
This framework lays the groundwork for fixing
rdar://16319955
llvm-svn: 214666
|
| |
|
|
|
|
|
|
| |
vector load is not a good transform when paired loads are available.
The combiner was creating Q-register loads and stores, which then had to be spilled because there are no callee-save Q registers!
llvm-svn: 214634
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
so using a single helper which adds operands back onto the worklist.
Several places didn't rigorously do this but a couple already did.
Factoring them together and doing it rigorously is important to delete
things recursively early on in the combiner and get a chance to see
accurate hasOneUse values. While no existing test cases change, an
upcoming patch to add DAG combining logic for PSHUFB requires this to
work correctly.
llvm-svn: 214623
|
| |
|
|
|
|
|
|
|
|
|
|
| |
constant-folded
during DAGCombine in certain circumstances. Unfortunately, the circumstances required
to trigger the issue seem to require a pretty specific interaction of DAGCombines,
and I haven't been able to find a testcase that reproduces on X86, ARM, or AArch64.
The functionality added here is replicated in essentially every other DAG combine,
so it seems pretty obviously correct.
llvm-svn: 214622
|
| |
|
|
|
|
|
| |
These two lines have been commented out for over 4 years. They aren't
helping anyone.
llvm-svn: 214615
|
| |
|
|
| |
llvm-svn: 214588
|