| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
| |
This had been reverted because the new test failed on non-X86 bots. I moved
the new test to the appropriate subdirectory to correct this.
Differential Revision: https://reviews.llvm.org/D41264
Original submission: r321122 (which was reverted by r321125)
This reverts commit 3c1639b5703c387a0d8cba2862803b4e68dff436.
llvm-svn: 321911
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This commit updates the BufferByteStreamer, used by DebugLocStream
to buffer bytes/comments to put in the debug_loc section, to
make sure that the Buffer and Comments vectors are synced.
Previously, when an SLEB128 or ULEB128 was emitted together with
a comment, the vectors could be out-of-sync if the LEB encoding
added several entries to the Buffer vectors, while we only added
a single entry to the Comments vector.
The goal with this is to get the comments in the debug_loc
section in the .s file correctly aligned.
Example (using ARM as target):
Instead of
.byte 144 @ sub-register DW_OP_regx
.byte 128 @ 256
.byte 2 @ DW_OP_piece
.byte 147 @ 8
.byte 8 @ sub-register DW_OP_regx
.byte 144 @ 257
.byte 129 @ DW_OP_piece
.byte 2 @ 8
.byte 147 @
.byte 8 @
we now get
.byte 144 @ sub-register DW_OP_regx
.byte 128 @ 256
.byte 2 @
.byte 147 @ DW_OP_piece
.byte 8 @ 8
.byte 144 @ sub-register DW_OP_regx
.byte 129 @ 257
.byte 2 @
.byte 147 @ DW_OP_piece
.byte 8 @ 8
Reviewers: JDevlieghere, rnk, aprantl
Reviewed By: aprantl
Subscribers: davide, Ka-Ka, uabelho, aemerson, javed.absar, kristof.beyls, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D41763
llvm-svn: 321907
|
|
|
|
|
|
|
|
|
|
|
|
| |
While searching for loads to be narrowed, equal sized loads were not
added to the list, resulting in anyext loads not being converted to
zext loads.
https://bugs.llvm.org/show_bug.cgi?id=35763
Differential Revision: https://reviews.llvm.org/D41628
llvm-svn: 321862
|
|
|
|
|
|
|
| |
When element size is 1, it's just wasteful to create MUL with 1.
https://reviews.llvm.org/D41738
llvm-svn: 321857
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the DWARF 5 feature described at
http://www.dwarfstd.org/ShowIssue.php?issue=141215.1
This allows a consumer to understand whether a composite data type is
trivially copyable and thus should be passed by value instead of by
reference. The canonical example is being able to distinguish the
following two types:
// S is not trivially copyable because of the explicit destructor.
struct S {
~S() {}
};
// T is a POD type.
struct T {
~T() = default;
};
This patch adds two new (DI)flags to LLVM metadata: TypePassByValue
and TypePassByReference.
<rdar://problem/36034922>
Differential Revision: https://reviews.llvm.org/D41743
llvm-svn: 321844
|
|
|
|
|
|
| |
Fixes an ASAN bug found by oss-fuzz.
llvm-svn: 321813
|
|
|
|
|
|
|
|
|
| |
The existing version worked incorrectly when inversion of a branch condintion is impossible.
Changed the "fixupConditionalBranch()" function - a new BB (a trampoline) is created to keep the original branch condition.
Differential Revision: https://reviews.llvm.org/D41634
llvm-svn: 321785
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add iterator ranges for machine instruction phis, similar to the IR-level
phi ranges added in r303964. I updated a few places to use this. Besides
general code simplification, this change will allow removing a non-upstream
change from Swift's copy of LLVM (in a better way than my previous attempt
in http://reviews.llvm.org/D19080).
https://reviews.llvm.org/D41672
llvm-svn: 321783
|
|
|
|
|
|
|
|
| |
Handle this in DAGCombiner::visitEXTRACT_VECTOR_ELT the same as we already do in SelectionDAG::getNode and use APInt instead of getZExtValue.
This should also fix oss-fuzz #4910
llvm-svn: 321767
|
|
|
|
|
|
|
|
|
|
|
| |
loads per block; NFC
The preference only applies to 'memcmp() == 0' expansion, so try to make that clearer.
x86 will likely benefit by increasing the default value from '1' to '2' as seen in PR33325:
https://bugs.llvm.org/show_bug.cgi?id=33325
...so that is the planned follow-up to this clean-up step.
llvm-svn: 321756
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently it's not possible to access MCSubtargetInfo from a TgtMCAsmBackend.
D20830 threaded an MCSubtargetInfo reference through
MCAsmBackend::relaxInstruction, but this isn't the only function that would
benefit from access. This patch removes the Triple and CPUString arguments
from createMCAsmBackend and replaces them with MCSubtargetInfo.
This patch just changes the interface without making any intentional
functional changes. Once in, several cleanups are possible:
* Get rid of the awkward MCSubtargetInfo handling in ARMAsmBackend
* Support 16-bit instructions when valid in MipsAsmBackend::writeNopData
* Get rid of the CPU string parsing in X86AsmBackend and just use a SubtargetFeature for HasNopl
* Emit 16-bit nops in RISCVAsmBackend::writeNopData if the compressed instruction set extension is enabled (see D41221)
This change initially exposed PR35686, which has since been resolved in r321026.
Differential Revision: https://reviews.llvm.org/D41349
llvm-svn: 321692
|
|
|
|
|
|
|
|
|
| |
Previously the code for handling G_SMULO didn't properly check for the signed
multiply overflow, instead treating it the same as the unsigned G_UMULO.
Fixes PR35800.
llvm-svn: 321690
|
|
|
|
|
|
|
|
| |
A call may have an intrinsic name but not have a valid intrinsic ID,
for example with llvm.invariant.group.barrier. If so, treat it as a
normal call like FastISel does.
llvm-svn: 321662
|
|
|
|
|
|
|
|
|
|
|
| |
Tests updated to explicitly use fast-isel at -O0 instead of implicitly.
This change also allows an explicit -fast-isel option to override an
implicitly enabled global-isel. Otherwise -fast-isel would have no effect at -O0.
Differential Revision: https://reviews.llvm.org/D41362
llvm-svn: 321655
|
|
|
|
|
|
|
| |
Our internal testing has revealed has discovered bugs in PPC builds.
I have forward reproduction instructions to the original author (Nirav).
llvm-svn: 321649
|
|
|
|
|
|
|
|
|
|
|
| |
Remove the acceptance of ANY_EXTEND nodes while trying to move and
nodes back to loads.
Bugzilla: https://bugs.llvm.org/show_bug.cgi?id=35765
Differential Revision: https://reviews.llvm.org/D41625
llvm-svn: 321641
|
|
|
|
|
|
| |
result type would still be legal.
llvm-svn: 321638
|
|
|
|
|
|
|
|
| |
of the WideVecOp handlers.
We should only be in the handler if the tyep action is TypeWidenVector. There's no reason to try to do anything else.
llvm-svn: 321635
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
when using setOperationAction Promote for INT_TO_FP and FP_TO_INT
Currently the promotion for these ignores the normal getTypeToPromoteTo and instead just tries to double the element width. This is because the default behavior of getTypeToPromote to just adds 1 to the SimpleVT, which has the affect of increasing the element count while keeping the scalar size the same.
If multiple steps are required to get to a legal operation type, int_to_fp will be promoted multiple times. And fp_to_int will keep trying wider types in a loop until it finds one that works.
getTypeToPromoteTo does have the ability to query a promotion map to get the type and not do the increasing behavior. It seems better to just let the target specify the promotion type in the map explicitly instead of letting the legalizer iterate via widening.
FWIW, it's worth I think for any other vector operations that need to be promoted, we have to specify the type explicitly because the default behavior of getTypeToPromote isn't useful for vectors. The other types of promotion already require either the element count is constant or the total vector width is constant, but neither happens by incrementing the SimpleVT enum.
Differential Revision: https://reviews.llvm.org/D40664
llvm-svn: 321629
|
|
|
|
| |
llvm-svn: 321585
|
|
|
|
|
|
|
|
|
|
|
| |
Fix code in LiveDebugVariables that was changing def MachineOperands to
uses, which will hit an assert for dead operands after the change to add
the renamable bit to MachineOperands. Avoid the assert by clearing the
dead bit before changing the operand to a use.
Fixes issue reported in out of tree target by Jesper Antonsson at Ericsson.
llvm-svn: 321571
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
I have been getting rather difficult to reproduce SIGBUS crashes when
compiling certain FreeBSD sources, and their stack traces pointed
squarely at `SelectionDAG::salvageDebugInfo()`:
```
Core was generated by `/usr/obj/share/dim/src/freebsd/clang600-import/amd64.amd64/tmp/usr/bin/cc -cc1 -'.
Program terminated with signal SIGBUS, Bus error.
#0 isInvalidated () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SDNodeDbgValue.h:115
115 bool isInvalidated() const { return Invalid; }
(gdb) bt
#0 isInvalidated () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SDNodeDbgValue.h:115
#1 salvageDebugInfo () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp:7116
#2 0x00000000033b2516 in operator() () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:3595
#3 __invoke<(lambda at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:3593:59) &, llvm::SDNode *, llvm::SDNode *> () at /usr/include/c++/v1/type_traits:4323
#4 __call<(lambda at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:3593:59) &, llvm::SDNode *, llvm::SDNode *> () at /usr/include/c++/v1/__functional_base:349
#5 operator() () at /usr/include/c++/v1/functional:1562
#6 0x00000000033b0817 in operator() () at /usr/include/c++/v1/functional:1916
#7 NodeDeleted () at /share/dim/src/freebsd/clang600-import/contrib/llvm/include/llvm/CodeGen/SelectionDAG.h:293
#8 0x0000000003529dde in RemoveDeadNodes () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp:610
#9 0x00000000035556df in MorphNodeTo () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp:6794
#10 0x00000000033a9acc in MorphNode () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:2594
#11 0x00000000033ac80b in SelectCodeCommon () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:3601
#12 0x00000000023d464b in SelectCode () at /usr/obj/share/dim/src/freebsd/clang600-import/amd64.amd64/tmp/obj-tools/lib/clang/libllvm/X86GenDAGISel.inc:282902
#13 Select () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp:3072
#14 0x00000000033a5afa in DoInstructionSelection () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:988
#15 0x00000000033a4e1a in CodeGenAndEmitDAG () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:868
#16 0x00000000033a2643 in SelectAllBasicBlocks () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:1624
#17 0x000000000339f158 in runOnMachineFunction () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:466
#18 0x00000000023d03c4 in runOnMachineFunction () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp:175
#19 0x00000000035cc8c2 in runOnFunction () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/MachineFunctionPass.cpp:62
#20 0x00000000030dca9a in runOnFunction () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/IR/LegacyPassManager.cpp:1520
#21 0x00000000030dccf3 in runOnModule () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/IR/LegacyPassManager.cpp:1541
#22 0x00000000030dd228 in runOnModule () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/IR/LegacyPassManager.cpp:1597
#23 run () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/IR/LegacyPassManager.cpp:1700
#24 0x00000000014db578 in EmitAssembly () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/CodeGen/BackendUtil.cpp:815
#25 EmitBackendOutput () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/CodeGen/BackendUtil.cpp:1181
#26 0x00000000014d5b26 in HandleTranslationUnit () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/CodeGen/CodeGenAction.cpp:292
#27 0x0000000001c4c332 in ParseAST () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/Parse/ParseAST.cpp:159
#28 0x00000000015d546c in Execute () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/Frontend/FrontendAction.cpp:897
#29 0x0000000001cec311 in ExecuteAction () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/Frontend/CompilerInstance.cpp:991
#30 0x00000000014b4f81 in ExecuteCompilerInvocation () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/FrontendTool/ExecuteCompilerInvocation.cpp:252
#31 0x00000000014aa73f in cc1_main () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/tools/driver/cc1_main.cpp:221
#32 0x00000000014b2928 in ExecuteCC1Tool () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/tools/driver/driver.cpp:309
#33 main () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/tools/driver/driver.cpp:388
(gdb) frame 1
#1 salvageDebugInfo () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp:7116
7116 if (DV->isInvalidated())
(gdb) disassemble
Dump of assembler code for function salvageDebugInfo():
[...]
0x0000000003557348 <+744>: nopl 0x0(%rax,%rax,1)
0x0000000003557350 <+752>: mov (%r12),%r13
=> 0x0000000003557354 <+756>: cmpb $0x0,0x31(%r13)
0x0000000003557359 <+761>: jne 0x35573b0 <salvageDebugInfo()+848>
(gdb) info registers
[...]
r13 0x5a5a5a5a5a5a5a5a 6510615555426900570
```
The `0x5a5a5a5a5a5a5a5a` value in `r13` indicates the memory was either
uninitialized, or already freed.
Unfortunately I do not have a simple self-contained test case for this.
However, it seems pretty clear that the call to `AddDbgValue()` in
`salvageDebugInfo()` causes the problems, since it modifies
`SelectionDag::DbgInfo` while looping through one of its DenseMaps:
```
void SelectionDAG::salvageDebugInfo(SDNode &N) {
[...]
for (auto DV : GetDbgValues(&N)) {
if (DV->isInvalidated())
continue;
[...]
AddDbgValue(Clone, N0.getNode(), false);
[...]
}
}
```
At least, if I comment out the `AddDbgValue()` call, the crashes go
away. I propose to change this function slightly, similar to the
`SelectionDAG::transferDbgValues()` function just above it, to save the
cloned SDDbgValues in a separate SmallVector, and only call
AddDbgValue() on them after the for loop is done.
Reviewers: aprantl, bogner, bkramer, davide
Reviewed By: davide
Subscribers: davide, krytarowski, JDevlieghere, emaste, llvm-commits
Differential Revision: https://reviews.llvm.org/D41589
llvm-svn: 321545
|
|
|
|
|
|
| |
and scatter.
llvm-svn: 321540
|
|
|
|
| |
llvm-svn: 321535
|
|
|
|
|
|
|
|
| |
For example, float operations may fail to constant fold under certain circumstances (inf/nan/denormal creation etc.)
Reduced from oss-fuzz #4802 test case
llvm-svn: 321488
|
|
|
|
|
|
|
|
| |
getSExtValue/getZExtValue
Reduced from oss-fuzz #4782 test case
llvm-svn: 321464
|
|
|
|
|
|
|
|
| |
(add X, 1), 2) for i1
Reduced from oss-fuzz #4773 test case
llvm-svn: 321455
|
|
|
|
|
|
|
|
| |
other combines a chance to run.
This moves the combine for turning ANDs into shuffle with zero out of SimplifyVBinOps and places it only in visitAND below the reassociate handling. This fixes the specific case I noticed where we failed to combine two ands with constants.
llvm-svn: 321417
|
|
|
|
|
|
| |
of constant build vectors.
llvm-svn: 321414
|
|
|
|
|
|
|
|
|
|
| |
to get the type of the operand.
getOperand returns an SDValue that contains the node and the result number. There is no guarantee that the result number if 0. By using the -> operator we are calling SDNode::getValueType rather than SDValue::getValueType. This requires supplying a result number and we shouldn't assume it was 0.
I don't have a test case. Just noticed while cleaning up some other code and saw that it occurred in other places.
llvm-svn: 321397
|
|
|
|
| |
llvm-svn: 321391
|
|
|
|
|
|
|
|
|
| |
BaseIndexOffset supercedes findBaseOffset analysis save only Constant
Pool addresses. Migrate analysis to BaseIndexOffset.
Relanding after correcting base address matching check.
llvm-svn: 321389
|
|
|
|
|
|
|
|
|
|
| |
NFCI."
which was causing miscompilations in for some test-suite components.
This reverts commit 3e9de9ff0f3162920a2a3cba51c7dc14b54b4d16.
llvm-svn: 321380
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Re-land r321234. It had to be reverted because it broke the shared
library build. The shared library build broke because there was a
missing LLVMBuild dependency from lib/Passes (which calls
TargetMachine::getTargetIRAnalysis) to lib/Target. As far as I can
tell, this problem was always there but was somehow masked
before (perhaps because TargetMachine::getTargetIRAnalysis was a
virtual function).
Original commit message:
This makes the TargetMachine interface a bit simpler. We still need
the std::function in TargetIRAnalysis to avoid having to add a
dependency from Analysis to Target.
See discussion:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119749.html
I avoided adding all of the backend owners to this review since the
change is simple, but let me know if you feel differently about this.
Reviewers: echristo, MatzeB, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, jfb, arsenm, dschuff, mcrosier, sdardis, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D41464
llvm-svn: 321375
|
|
|
|
|
|
|
|
|
|
| |
TargetLowering::getVectorElementPointer so that the FrameIndex is on the left.
This seems to improve X86's ability to match this into an address computation. Otherwise the other operand gets assigned to the base register and the stack pointer + frame index ends up in the index register. But index registers can't encode ESP/RSP so we end up having to move it into another register to meet the constraint.
I could try to improve the address matcher in X86, but swapping the producer seemed easier. Several other places already have the operands in this order so this is at least consistent.
llvm-svn: 321370
|
|
|
|
|
|
|
| |
BaseIndexOffset supercedes findBaseOffset analysis save only Constant
Pool addresses. Migrate analysis to BaseIndexOffset.
llvm-svn: 321364
|
|
|
|
|
|
|
| |
Improve ReduceLoadWidth for SRL Patch is causing an issue on the
PPC64 BE santizer.
llvm-svn: 321349
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This replaces calls to getEntryCount().hasValue() with hasProfileData
that does the same thing. This refactoring is useful to do before adding
synthetic function entry counts but also a useful cleanup IMO even
otherwise. I have used hasProfileData instead of hasRealProfileData as
David had earlier suggested since I think profile implies "real" and I
use the phrase "synthetic entry count" and not "synthetic profile count"
but I am fine calling it hasRealProfileData if you prefer.
Reviewers: davidxl, silvas
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41461
llvm-svn: 321331
|
|
|
|
|
|
| |
More general cases are already handled by constant canonicalization and then the ReassociateOps call at line 5327
llvm-svn: 321280
|
|
|
|
|
|
|
|
| |
combine to work on non-splat vectors
The knownbits_mask_or_shuffle_uitofp change is interesting - shuffle combines manage to kick in, removing the AND constant mask load. For targets with fast-variable-shuffle this should reduce further to VPOR+VPSHUFB+VCVTDQ2PS.
llvm-svn: 321279
|
|
|
|
|
|
| |
work on non-splat vectors
llvm-svn: 321275
|
|
|
|
|
|
|
|
|
|
|
| |
If the SRL node is only used by an AND, we may be able to set the
ExtVT to the width of the mask, making the AND redundant. To support
this, another check has been added in isLegalNarrowLoad which queries
whether the load is valid.
Differential Revision: https://reviews.llvm.org/D41350
llvm-svn: 321259
|
|
|
|
|
|
| |
This reverts commit r321234. It breaks the -DBUILD_SHARED_LIBS=ON build.
llvm-svn: 321243
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This makes the TargetMachine interface a bit simpler. We still need
the std::function in TargetIRAnalysis to avoid having to add a
dependency from Analysis to Target.
See discussion:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119749.html
I avoided adding all of the backend owners to this review since the
change is simple, but let me know if you feel differently about this.
Reviewers: echristo, MatzeB, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, jfb, arsenm, dschuff, mcrosier, sdardis, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D41464
llvm-svn: 321234
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When intrinsics are allowed to have mem operands, there
are two ways this can happen. First is an intrinsic
that is marked has having a mem operand, but is not handled
by getTgtMemIntrinsic.
The second way can occur even for intrinsics which do not
have a mem operand. It seems the selector table does
some kind of sorting based on the opcode, and the
mem ref recording can happen in the same scope for
intrinsics that both do and do not have mem refs.
I haven't been able to figure out exactly why this happens
(although it happens even with the matcher optimizations disabled).
I'm not sure if it's worth trying to avoid hitting this for
these nodes since I think it's still reasonable to handle
this in case getTgtMemIntrinic is not implemented.
llvm-svn: 321208
|
|
|
|
|
|
|
| |
Prevent overlapping store elision when overlapping store is
pre-inc/dec as analysis is wrong in these cases.
llvm-svn: 321204
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The function section prefix for PGO based layout (e.g. hot/unlikely)
should look at the hotness of all blocks not just the entry BB.
A function with a cold entry but a very hot loop should be placed in the
hot section, for example, so that it is located close to other hot
functions it may call. For SamplePGO it was already looking at the
branch weights on calls, and I made that code conditional on whether
this is SamplePGO since it was essentially a noop for instrumentation
PGO anyway.
Reviewers: davidxl
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D41395
llvm-svn: 321197
|
|
|
|
|
|
|
|
|
| |
These functions simply call their counterparts in the associated SDNode,
which do take an optional SelectionDAG. This change makes the legalization
debug trace a little easier to read, since target-specific nodes will
now have their names shown instead of "Unknown node #123".
llvm-svn: 321180
|
|
|
|
|
|
| |
This reverts commit e32def3f7ebe1136b7038336eff56a415a962bf2.
llvm-svn: 321125
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It appears the code uses nullptr to represent a void type in debug metadata,
which led to an assertion failure when building DeltaAlgorithm.cpp with a
self-hosted clang on Windows.
I'm not sure why/if the problem was Windows-specific.
Fixes bug https://bugs.llvm.org/show_bug.cgi?id=35543
Differential Revision: https://reviews.llvm.org/D41264
llvm-svn: 321122
|