| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
| |
This reverts commit r259387 because it inserts illegal code after legalization
in some backends where i64 OR type is illegal for example.
llvm-svn: 274573
|
| |
|
|
|
|
|
| |
This only really matters when the index is non-constant since the
constant case already gets taken care of by other combines.
llvm-svn: 274569
|
| |
|
|
|
|
|
|
|
|
| |
concatenation of the inputs more general purpose.
We can now handle concatenation of each source multiple times. The previous code just checked for each source to appear once in either order.
This also now handles an entire source vector sized piece having undef indices correctly. We now concat with UNDEF instead of using one of the sources. This is responsible for the test case change.
llvm-svn: 274483
|
| |
|
|
|
|
|
|
| |
handle undef indices.
Undef indices can now be treated as zeros. Or if its undef ORed with zero, we will keep the undef.
llvm-svn: 274472
|
| |
|
|
|
|
| |
ArrayRef argument and its begin/end iterators. Also use 'int' type for number of elements and loop iterators to remove several typecasts. No functional change intended.
llvm-svn: 274338
|
| |
|
|
|
|
|
|
| |
pointer to a mask array. Convert all callers to use the ArrayRef version. No functional change intended.
For the most part this simplifies all callers. There were two places in X86 that needed an explicit makeArrayRef to shorten a statically sized array.
llvm-svn: 274337
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
|
| |
|
|
| |
llvm-svn: 274225
|
| |
|
|
|
|
| |
vectors where the zero vector is the first operand to the shuffle instead of the second.
llvm-svn: 274097
|
| |
|
|
|
|
| |
instead of SmallVectorImpl. NFC.
llvm-svn: 274095
|
| |
|
|
|
|
|
|
|
| |
I think this converts all the simple cases that really just care about
the generated code being position independent or not. The remaining
uses are a bit more complicated and are checking things like "is this
a library or executable" or "can this symbol be preempted".
llvm-svn: 274055
|
| |
|
|
|
|
| |
Should fix the shared library build.
llvm-svn: 273958
|
| |
|
|
| |
llvm-svn: 273909
|
| |
|
|
| |
llvm-svn: 273830
|
| |
|
|
| |
llvm-svn: 273828
|
| |
|
|
| |
llvm-svn: 273826
|
| |
|
|
| |
llvm-svn: 273802
|
| |
|
|
|
|
| |
This makes it slightly more powerful for dynamic-no-pic.
llvm-svn: 273704
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Recommiting after correcting over-eager Debug Value transfer fixing PR28270.
[DAG] Previously debug values would transfer debuginfo for the selected
start node for a replacement which allows for debug to be dropped.
Push debug value transfer to occur with node/value replacement in
SelectionDAG, remove now extraneous transfers of debug values.
This refixes PR9817 which was being incompletely checked in the
testsuite.
Reviewers: jyknight
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D21037
llvm-svn: 273585
|
| |
|
|
|
|
| |
it caused pr28270.
llvm-svn: 273518
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Recommiting after fixing over-aggressive assertion
[DAG] Previously debug values would transfer debuginfo for the selected
start node for a replacement which allows for debug to be dropped.
Push debug value transfer to occur with node/value replacement in
SelectionDAG, remove now extraneous transfers of debug values.
This refixes PR9817 which was being incompletely checked in the
testsuite.
Reviewers: jyknight
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D21037
llvm-svn: 273456
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D21214
llvm-svn: 273455
|
| |
|
|
|
|
|
|
|
|
|
| |
The setCallee function will set the number of fixed arguments based
on the size of the argument list. The FixedArgs parameter was often
explicitly set to 0, leading to a lack of consistent value for non-
vararg functions.
Differential Revision: http://reviews.llvm.org/D20376
llvm-svn: 273403
|
| |
|
|
| |
llvm-svn: 273264
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
canCombineSinCosLibcall() would previously combine sin+cos into sincos for
GNUX32/GNUEABI/GNUEABIHF regardless of whether UnsafeFPMath were set or not.
However, GNU would only combine them for UnsafeFPMath because sincos does not
set errno like sin and cos do. It seems likely that this is an oversight.
Reviewers: t.p.northover
Subscribers: t.p.northover, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D21431
llvm-svn: 273259
|
| |
|
|
| |
llvm-svn: 273244
|
| |
|
|
| |
llvm-svn: 273109
|
| |
|
|
|
|
|
|
| |
performance-unnecessary-value-param.
Contains some manual fixes. No functionality change intended.
llvm-svn: 273047
|
| |
|
|
|
|
|
|
| |
To be used by D19781.
Differential Revision: http://reviews.llvm.org/D19801
llvm-svn: 273039
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When calculating a square root using Newton-Raphson with two constants,
a naive implementation is to use five multiplications (four muls to calculate
reciprocal square root and another one to calculate the square root itself).
However, after some reassociation and CSE the same result can be obtained
with only four multiplications. Unfortunately, there's no reliable way to do
such a reassociation in the back-end. So, the patch modifies NR code itself
so that it directly builds optimal code for SQRT and doesn't rely on any
further reassociation.
Patch by Nikolai Bozhenov!
Differential Revision: http://reviews.llvm.org/D21127
llvm-svn: 272920
|
| |
|
|
|
|
|
|
|
| |
Reverting due to assertion failure in
lib/CodeGen/SelectionDAG/InstrEmitter.cpp
This reverts commit r272792.
llvm-svn: 272799
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[DAG] Previously debug values would transfer debuginfo for the selected
start node for a replacement which allows for debug to be dropped.
Push debug value transfer to occur with node/value replacement in
SelectionDAG, remove now extraneous transfers of debug values.
This refixes PR9817 which was being incompletely checked in the
testsuite.
Reviewers: jyknight
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D21037
llvm-svn: 272792
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
from i8 or i16
For <N x i32> type mul, pmuludq will be used for targets without SSE41, which
often introduces many extra pack and unpack instructions in vectorized loop
body because pmuludq generates <N/2 x i64> type value. However when the operands
of <N x i32> mul are extended from smaller size values like i8 and i16, the type
of mul may be shrunk to use pmullw + pmulhw/pmulhuw instead of pmuludq, which
generates better code. For targets with SSE41, pmulld is supported so no
shrinking is needed.
Differential Revision: http://reviews.llvm.org/D20931
llvm-svn: 272694
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The exit-on-error flag in the ARM test is necessary in order to avoid an
unreachable in the DAGTypeLegalizer, when trying to expand a physical register.
We can also avoid this situation by introducing a bitcast early on, where the
invalid scalar-to-vector conversion is detected.
We also add a test for PowerPC, which goes through a similar code path in the
SelectionDAGBuilder.
Fixes PR27765.
Differential Revision: http://reviews.llvm.org/D21061
llvm-svn: 272644
|
| |
|
|
|
|
| |
constant in soft float mode on PowerPC 32 architecture.
llvm-svn: 272543
|
| |
|
|
|
|
|
|
| |
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
|
| |
|
|
|
|
|
|
|
| |
Fixes {u,}long_{min,max,clamp} opencl piglit regressions on EG.
Reviewers: arsenm
Differential Revision: http://reviews.llvm.org/D17898
llvm-svn: 272272
|
| |
|
|
|
|
|
|
| |
As suggested by clang-tidy's performance-unnecessary-copy-initialization.
This can easily hit lifetime issues, so I audited every change and ran the
tests under asan, which came back clean.
llvm-svn: 272126
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch is adding support for the MSVC buffer security check implementation
The buffer security check is turned on with the '/GS' compiler switch.
* https://msdn.microsoft.com/en-us/library/8dbf701c.aspx
* To be added to clang here: http://reviews.llvm.org/D20347
Some overview of buffer security check feature and implementation:
* https://msdn.microsoft.com/en-us/library/aa290051(VS.71).aspx
* http://www.ksyash.com/2011/01/buffer-overflow-protection-3/
* http://blog.osom.info/2012/02/understanding-vs-c-compilers-buffer.html
For the following example:
```
int example(int offset, int index) {
char buffer[10];
memset(buffer, 0xCC, index);
return buffer[index];
}
```
The MSVC compiler is adding these instructions to perform stack integrity check:
```
push ebp
mov ebp,esp
sub esp,50h
[1] mov eax,dword ptr [__security_cookie (01068024h)]
[2] xor eax,ebp
[3] mov dword ptr [ebp-4],eax
push ebx
push esi
push edi
mov eax,dword ptr [index]
push eax
push 0CCh
lea ecx,[buffer]
push ecx
call _memset (010610B9h)
add esp,0Ch
mov eax,dword ptr [index]
movsx eax,byte ptr buffer[eax]
pop edi
pop esi
pop ebx
[4] mov ecx,dword ptr [ebp-4]
[5] xor ecx,ebp
[6] call @__security_check_cookie@4 (01061276h)
mov esp,ebp
pop ebp
ret
```
The instrumentation above is:
* [1] is loading the global security canary,
* [3] is storing the local computed ([2]) canary to the guard slot,
* [4] is loading the guard slot and ([5]) re-compute the global canary,
* [6] is validating the resulting canary with the '__security_check_cookie' and performs error handling.
Overview of the current stack-protection implementation:
* lib/CodeGen/StackProtector.cpp
* There is a default stack-protection implementation applied on intermediate representation.
* The target can overload 'getIRStackGuard' method if it has a standard location for the stack protector cookie.
* An intrinsic 'Intrinsic::stackprotector' is added to the prologue. It will be expanded by the instruction selection pass (DAG or Fast).
* Basic Blocks are added to every instrumented function to receive the code for handling stack guard validation and errors handling.
* Guard manipulation and comparison are added directly to the intermediate representation.
* lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
* lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
* There is an implementation that adds instrumentation during instruction selection (for better handling of sibbling calls).
* see long comment above 'class StackProtectorDescriptor' declaration.
* The target needs to override 'getSDagStackGuard' to activate SDAG stack protection generation. (note: getIRStackGuard MUST be nullptr).
* 'getSDagStackGuard' returns the appropriate stack guard (security cookie)
* The code is generated by 'SelectionDAGBuilder.cpp' and 'SelectionDAGISel.cpp'.
* include/llvm/Target/TargetLowering.h
* Contains function to retrieve the default Guard 'Value'; should be overriden by each target to select which implementation is used and provide Guard 'Value'.
* lib/Target/X86/X86ISelLowering.cpp
* Contains the x86 specialisation; Guard 'Value' used by the SelectionDAG algorithm.
Function-based Instrumentation:
* The MSVC doesn't inline the stack guard comparison in every function. Instead, a call to '__security_check_cookie' is added to the epilogue before every return instructions.
* To support function-based instrumentation, this patch is
* adding a function to get the function-based check (llvm 'Value', see include/llvm/Target/TargetLowering.h),
* If provided, the stack protection instrumentation won't be inlined and a call to that function will be added to the prologue.
* modifying (SelectionDAGISel.cpp) do avoid producing basic blocks used for inline instrumentation,
* generating the function-based instrumentation during the ISEL pass (SelectionDAGBuilder.cpp),
* if FastISEL (not SelectionDAG), using the fallback which rely on the same function-based implemented over intermediate representation (StackProtector.cpp).
Modifications
* adding support for MSVC (lib/Target/X86/X86ISelLowering.cpp)
* adding support function-based instrumentation (lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp, .h)
Results
* IR generated instrumentation:
```
clang-cl /GS test.cc /Od /c -mllvm -print-isel-input
```
```
*** Final LLVM Code input to ISel ***
; Function Attrs: nounwind sspstrong
define i32 @"\01?example@@YAHHH@Z"(i32 %offset, i32 %index) #0 {
entry:
%StackGuardSlot = alloca i8* <<<-- Allocated guard slot
%0 = call i8* @llvm.stackguard() <<<-- Loading Stack Guard value
call void @llvm.stackprotector(i8* %0, i8** %StackGuardSlot) <<<-- Prologue intrinsic call (store to Guard slot)
%index.addr = alloca i32, align 4
%offset.addr = alloca i32, align 4
%buffer = alloca [10 x i8], align 1
store i32 %index, i32* %index.addr, align 4
store i32 %offset, i32* %offset.addr, align 4
%arraydecay = getelementptr inbounds [10 x i8], [10 x i8]* %buffer, i32 0, i32 0
%1 = load i32, i32* %index.addr, align 4
call void @llvm.memset.p0i8.i32(i8* %arraydecay, i8 -52, i32 %1, i32 1, i1 false)
%2 = load i32, i32* %index.addr, align 4
%arrayidx = getelementptr inbounds [10 x i8], [10 x i8]* %buffer, i32 0, i32 %2
%3 = load i8, i8* %arrayidx, align 1
%conv = sext i8 %3 to i32
%4 = load volatile i8*, i8** %StackGuardSlot <<<-- Loading Guard slot
call void @__security_check_cookie(i8* %4) <<<-- Epilogue function-based check
ret i32 %conv
}
```
* SelectionDAG generated instrumentation:
```
clang-cl /GS test.cc /O1 /c /FA
```
```
"?example@@YAHHH@Z": # @"\01?example@@YAHHH@Z"
# BB#0: # %entry
pushl %esi
subl $16, %esp
movl ___security_cookie, %eax <<<-- Loading Stack Guard value
movl 28(%esp), %esi
movl %eax, 12(%esp) <<<-- Store to Guard slot
leal 2(%esp), %eax
pushl %esi
pushl $204
pushl %eax
calll _memset
addl $12, %esp
movsbl 2(%esp,%esi), %esi
movl 12(%esp), %ecx <<<-- Loading Guard slot
calll @__security_check_cookie@4 <<<-- Epilogue function-based check
movl %esi, %eax
addl $16, %esp
popl %esi
retl
```
Reviewers: kcc, pcc, eugenis, rnk
Subscribers: majnemer, llvm-commits, hans, thakis, rnk
Differential Revision: http://reviews.llvm.org/D20346
llvm-svn: 272053
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
My first attempt at this had an overly aggressive assert - chain nodes
will only be removed, but we could hit the assert if a non-chain node
was CSE'd (NodeToMatch, for instance).
This reapplies r271706 by reverting r271713 and fixing an assert.
Original message:
Avoid relying on UB by looking into deleted nodes for a marker value.
Instead, update the list of chain nodes as we go.
llvm-svn: 271733
|
| |
|
|
|
|
|
|
|
| |
Seeing failures in CodeGen/Generic/icmp-illegal.ll on quite a few
bots.
This reverts r271706.
llvm-svn: 271713
|
| |
|
|
|
|
|
| |
Avoid relying on UB by looking into deleted nodes for a marker value.
Instead, update the list of chain nodes as we go.
llvm-svn: 271706
|
| |
|
|
|
|
|
| |
The current node shouldn't be (and isn't) removed partway through
selection.
llvm-svn: 271699
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is effectively a revert of:
http://reviews.llvm.org/rL249702 - [InstCombine] transform masking off of an FP sign bit into a fabs() intrinsic call (PR24886)
and:
http://reviews.llvm.org/rL249701 - [ValueTracking] teach computeKnownBits that a fabs() clears sign bits
and a reimplementation as a DAG combine for targets that have IEEE754-compliant fabs/fneg instructions.
This is intended to resolve the objections raised on the dev list:
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098154.html
and:
https://llvm.org/bugs/show_bug.cgi?id=24886#c4
In the interest of patch minimalism, I've only partly enabled AArch64. PowerPC, MIPS, x86 and others can enable later.
Differential Revision: http://reviews.llvm.org/D19391
llvm-svn: 271573
|
| |
|
|
|
|
|
|
|
|
| |
Although this was intended to be NFC, the test case wiggle shows a change in
code scheduling/RA caused by a difference in the SDLoc() generation.
Depending on how you look at it, this is the (dis)advantage of exact checking
in regression tests.
llvm-svn: 271526
|
| |
|
|
| |
llvm-svn: 271429
|
| |
|
|
|
|
|
|
|
| |
When the index is known to be constant 0, insert directly into the the low half,
instead of spilling, performing the insert in-memory, and reloading.
Differential Revision: http://reviews.llvm.org/D20763
llvm-svn: 271428
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This should have been converting the size to bytes, but wasn't really.
These should probably all be using getStoreSize instead.
I haven't been able to come up with a meaningful testcase for this.
I can trigger it using combinations of struct loads and stores,
but can't observe a difference in non-broken testcases.
isAlias is only really used during store merging, so I'm not sure how
to get into the vector splitting situation the comment describes
since store merging is only done before type legalization.
llvm-svn: 271356
|
| |
|
|
|
|
|
|
| |
We think it's OK to generate half fminnan because it's legal for the
transform-to type (f32; r245196). However, PromoteFloatRes was missing
the case; simply promote like the other binops, including minnum.
llvm-svn: 271317
|
| |
|
|
|
|
|
|
| |
This recommits r267649 with a fix for PR27539.
Differential Revision: http://reviews.llvm.org/D20598
llvm-svn: 271033
|