| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
llvm-svn: 338352
|
|
|
|
|
|
|
|
| |
BuildSDIV/BuildUDIV/etc.
The vector contains the SDNodes that these functions create. The number of nodes is always a small number so we should use SmallVector to avoid a heap allocation.
llvm-svn: 338329
|
|
|
|
|
|
| |
BuildUDIV was already correct.
llvm-svn: 338304
|
|
|
|
|
|
| |
BuildSDIVPow2.
llvm-svn: 338303
|
|
|
|
|
|
|
|
|
|
| |
BuildSDIV/BuildUDIV.
This removes the need for an assert to ensure the pointer isn't null.
Years ago we had ifs the checked the pointer was non-null before very access to the vector. These checks were removed and replaced with a single assert. But a reference seems more suitable here.
llvm-svn: 338205
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
A follow-up for D49266 / rL337166.
At least one of these cases is more canonical,
so we really do have to handle it.
https://godbolt.org/g/pkzP3X
https://rise4fun.com/Alive/pQyhZZ
We won't get to these cases with I1 being -1,
as that will be constant-folded to true or false.
I'm also not sure we actually hit the 'ule' case,
but i think the worst think that could happen is that being dead code.
Reviewers: spatel, craig.topper, RKSimon, javed.absar, efriedma
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49497
llvm-svn: 338044
|
|
|
|
|
|
|
| |
scalarizeVectorLoad creates MERGE_VALUES nodes which are immediately
decomposed in expandLoad. Elide the node in these cases.
llvm-svn: 337708
|
|
|
|
|
|
|
|
| |
Mirrors the existing exit path for f128, avoiding a crash later on.
Differential Revision: https://reviews.llvm.org/D49524
llvm-svn: 337506
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
[[ https://bugs.llvm.org/show_bug.cgi?id=38149 | PR38149 ]]
As discussed in https://reviews.llvm.org/D49179#1158957 and later,
the IR for 'check for [no] signed truncation' pattern can be improved:
https://rise4fun.com/Alive/gBf
^ that pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958 https://bugs.llvm.org/show_bug.cgi?id=21530
in signed case, therefore it is probably a good idea to improve it.
But the IR-optimal patter does not lower efficiently, so we want to undo it..
This handles the simple pattern.
There is a second pattern with predicate and constants inverted.
NOTE: we do not check uses here. we always do the transform.
Reviewers: spatel, craig.topper, RKSimon, javed.absar
Reviewed By: spatel
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D49266
llvm-svn: 337166
|
|
|
|
|
|
| |
As discussed on D48825.
llvm-svn: 336491
|
|
|
|
|
|
|
|
| |
As discussed on PR37989, this patch adds EXTRACT_SUBVECTOR handling to TargetLowering::SimplifyDemandedVectorElts and calls it from DAGCombiner::visitEXTRACT_SUBVECTOR.
Differential Revision: https://reviews.llvm.org/D48825
llvm-svn: 336490
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
|
|
|
|
|
|
|
| |
It's implemented in Target & include from other Target headers, so the
header should be in Target.
llvm-svn: 328392
|
|
|
|
|
|
| |
If we get into the right hand side of the OR, we know that isOpaque is true since the left hand size is just a check that it's false.
llvm-svn: 327179
|
|
|
|
|
|
| |
We were checking the condition code a second time when we were already in a block with this same condition code check.
llvm-svn: 327069
|
|
|
|
|
|
|
|
| |
Notably helps cleanup after legalization of vector types
Differential Revision: https://reviews.llvm.org/D43674
llvm-svn: 326838
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
splats of constants.
This supports things like
(setcc ugt X, 0) -> (setcc ne X, 0)
I've restricted to only make changes to vectors before legalize ops because I doubt all targets have accurate condition code legality information for vectors given how little we did before.
Differential Revision: https://reviews.llvm.org/D42948
llvm-svn: 326495
|
|
|
|
|
|
| |
ADD/SUB ops
llvm-svn: 326044
|
|
|
|
|
|
| |
TRUNCATE ops
llvm-svn: 326043
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
isCondCodeLegal. Update callers to use one or the other.
isCondCodeLegal internally checked Legal or Custom which is misleading. Though no targets set any cond code action to Custom today.
So I've renamed isCondCodeLegal to isCondCodeLegalOrCustom and added a real isCondCodeLegal that only checks Legal.
I've changed legalization code to use isCondCodeLegalOrCustom and left things reachable via DAG combine as isCondCodeLegal. I've also changed some places that called getCondCodeAction and compared to Legal to just use isCondCodeLegal.
I'm looking at trying to keep SETCC all the way to isel for the AVX512 integer comparisons and I suspect I'll need to make some condition codes Custom to stop DAG combine from changing things post LegalizeOps. Prior to this only Expand stopped DAG combine, but that causes LegalizeOps to try to swap operands or invert rather than calling our Custom handler.
Differential Revision: https://reviews.llvm.org/D43607
llvm-svn: 325829
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
against vector splats of constants.
This is split off from D42948 and includes just the cases that constant fold to true or false. It also includes some refactoring to keep predicate checks together.
This supports things like
(setcc uge X, 0) -> true
Differential Revision: https://reviews.llvm.org/D43489
llvm-svn: 325627
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
simplify DAGCombiner and simplifySetCC code and fix a bug.
DAGCombiner and SimplifySetCC both use getPointerTy for shift amounts pre-legalization. DAGCombiner uses a single helper function to hide this. SimplifySetCC does it in multiple places.
This patch adds a defaulted parameter to getShiftAmountTy that can make it return getPointerTy for scalar types. Use this parameter to simplify the SimplifySetCC and DAGCombiner.
Additionally, there were two places in SimplifySetCC that were creating shifts using the target's preferred shift amount pre-legalization. If the target uses a narrow type and the type is illegal, this can cause SimplfiySetCC to create a shift with an amount that can't represent all possible shift values for the type. To fix this we should use pointer type there too.
Alternatively we could make getScalarShiftAmountTy for each target return a safe value for large types as proposed in D43445. And maybe we should still do that, but fixing the SimplifySetCC code keeps other targets from tripping over this in the future.
Fixes PR36250.
Differential Revision: https://reviews.llvm.org/D43449
llvm-svn: 325602
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D43431
llvm-svn: 325449
|
|
|
|
| |
llvm-svn: 325363
|
|
|
|
| |
llvm-svn: 325359
|
|
|
|
|
|
|
|
|
|
| |
shuffle masks
Based off the DemandedElts mask the and UNDEF elements returned from the SimplifyDemandedVectorElts calls to the shuffle operands, we can attempt to simplify the shuffle mask.
I had to be very conservative here as accepting post-legalized shuffle masks could cause problems for targets that legalize UNDEF mask elements back to inrange values (PowerPC), similarly combining to identity shuffle masks could cause too much UNDEF information to disappear for later combines.
llvm-svn: 325354
|
|
|
|
|
|
|
|
| |
simplifying VSELECT operands
This just adds a basic pass through - we can add constant selection mask handling in a future patch to fully match InstCombine.
llvm-svn: 325338
|
|
|
|
|
|
|
|
|
|
|
|
| |
TargetLowering::SimplifyDemandedVectorElts
This is mainly a move of simplifyShuffleOperands from DAGCombiner::visitVECTOR_SHUFFLE to create a more general purpose TargetLowering::SimplifyDemandedVectorElts implementation.
Further features can be moved/added in future patches.
Differential Revision: https://reviews.llvm.org/D42896
llvm-svn: 325232
|
|
|
|
|
|
| |
This exact code already exists a little further up.
llvm-svn: 325101
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
bits
This reverses instcombine's demanded bits' transform which always tries to clear bits in constants.
As noted in PR35792 and shown in the test diffs:
https://bugs.llvm.org/show_bug.cgi?id=35792
...we can do better in codegen by trying to form -1. The x86 sub test shows a missed opportunity.
I did investigate changing instcombine's behavior, but it would be more work to change
canonicalization in IR. Clearing bits / shrinking constants can allow killing instructions,
so we'd have to figure out how to not regress those cases.
Differential Revision: https://reviews.llvm.org/D42986
llvm-svn: 324839
|
|
|
|
|
|
|
|
| |
SelectionDAG::getBoolConstant in the one place it was used.
SelectionDAG::getBoolConstant was recently introduced. At the time I didn't know getConstTrueVal existed, but I think getBoolConstant is better as it will use the source VT to make sure it can properly detect floating point if it is configured differently.
llvm-svn: 324832
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
on the target's boolean content
Many in SimplifySetCC and FoldSetCC try to create true or false constants. Some of them query getBooleanContents to figure out whether to use all ones or just 1 for true. But many places do not check and just use 1 without ensuring the VT has an i1 scalar type. Note sure if those places only trigger before type legalization so they only see an i1
type?
To cleanup the inconsistency and reduce some duplicated code, this patch adds a getBoolConstant method to SelectionDAG that takes are of querying getBooleanContents and doing the right thing.
Differential Revision: https://reviews.llvm.org/D43037
llvm-svn: 324634
|
|
|
|
| |
llvm-svn: 324401
|
|
|
|
| |
llvm-svn: 324397
|
|
|
|
|
|
|
|
|
|
|
|
| |
When handling vectors with non byte-sized elements, reverse the order of the
elements in the built integer if the target is Big-Endian.
SystemZ tests updated.
Review: Eli Friedman, Ulrich Weigand.
https://reviews.llvm.org/D42786
llvm-svn: 324063
|
|
|
|
|
|
|
|
| |
vXi1 vectors into logic ops.
This transform was already being done for setcc of scalar i1. This extends it to vectors.
llvm-svn: 323585
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was completely broken, but hopefully fixed by this patch.
In cases where it is needed, a vector with non byte-sized elements is stored
by extracting, zero-extending, shift:ing and or:ing the elements into an
integer of the same width as the vector, which is then stored.
Review: Eli Friedman, Ulrich Weigand
https://reviews.llvm.org/D42100#inline-369520
https://bugs.llvm.org/show_bug.cgi?id=35520
llvm-svn: 323042
|
|
|
|
| |
llvm-svn: 322855
|
|
|
|
|
|
|
|
|
|
| |
Allow SimplifyDemandedBits to use TargetLoweringOpt::computeKnownBits to look through bitcasts. This can help simplifying in some cases where bitcasts of constants generated during or after legalization can't be folded away, and thus didn't get picked up by SimplifyDemandedBits. This fixes PR34620, where a redundant pand created during legalization from lowering and lshr <16xi8> wasn't being simplified due to the presence of a bitcasted build_vector as an operand.
Committed on the behalf of @sameconrad (Sam Conrad)
Differential Revision: https://reviews.llvm.org/D41643
llvm-svn: 321969
|
|
|
|
|
|
|
|
|
|
| |
TargetLowering::getVectorElementPointer so that the FrameIndex is on the left.
This seems to improve X86's ability to match this into an address computation. Otherwise the other operand gets assigned to the base register and the stack pointer + frame index ends up in the index register. But index registers can't encode ESP/RSP so we end up having to move it into another register to meet the constraint.
I could try to improve the address matcher in X86, but swapping the producer seemed easier. Several other places already have the operands in this order so this is at least consistent.
llvm-svn: 321370
|
|
|
|
|
|
| |
The Function can never be nullptr so we can return a reference.
llvm-svn: 320884
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SplitVecOp_EXTRACT_VECTOR_ELT/SplitVecRes_INSERT_VECTOR_ELT
Two issues found when doing codegen for splitting vector with non-zero alloca addr space:
DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT/SplitVecOp_EXTRACT_VECTOR_ELT uses dummy pointer info for creating
SDStore. Since one pointer operand contains multiply and add, InferPointerInfo is unable to
infer the correct pointer info, which ends up with a dummy pointer info for the target to lower
store and results in isel failure. The fix is to introduce MachinePointerInfo::getUnknownStack to
represent MachinePointerInfo which is known in alloca address space but without other information.
TargetLowering::getVectorElementPointer uses value type of pointer in addr space 0 for
multiplication of index and then add it to the pointer. However the pointer may be in an addr
space which has different size than addr space 0. The fix is to use the pointer value type for
index multiplication.
Differential Revision: https://reviews.llvm.org/D39758
llvm-svn: 319622
|
|
|
|
|
|
|
|
|
|
|
| |
The object can't straddle the address space
wrap around, so I think it's OK to assume any
offsets added to the base object pointer can't
overflow. Similar logic already appears to be
applied in SelectionDAGBuilder when lowering
aggregate returns.
llvm-svn: 319272
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is needed for cases when the memory access is not as big as the width of
the data type. For instance, storing i1 (1 bit) would be done in a byte (8
bits).
Using 'BitSize >> 3' (or '/ 8') would e.g. give the memory access of an i1 a
size of 0, which for instance makes alias analysis return NoAlias even when
it shouldn't.
There are no tests as this was done as a follow-up to the bugfix for the case
where this was discovered (r318824). This handles more similar cases.
Review: Björn Petterson
https://reviews.llvm.org/D40339
llvm-svn: 319173
|
|
|
|
|
|
|
|
| |
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some of the AMDGPU stack addressing modes require knowing the sign
bit is zero. We used to accomplish this by custom lowering
frame indexes, and then putting an AssertZext around a
TargetFrameIndex. This required specifically looking for
the AssextZext + frame index pattern which was moderately
disgusting. The same could probably be accomplished
with a target specific node, but would still
require special handling of frame indexes.
llvm-svn: 317671
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TargetLowering::SimplifyDemandedBits.
Summary:
We shouldn't recurse any further but it doesn't mean we shouldn't be able to give the known bits for a constant. The caller would probably like that we always return the right answer for a constant RHS. This matches what InstCombine does in this case.
I don't have a test case because this showed up while trying to revive D31724.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: arsenm, llvm-commits
Differential Revision: https://reviews.llvm.org/D38967
llvm-svn: 316255
|
|
|
|
|
|
|
|
| |
UpdateNodeOperands() modifies the node in-place and using the return value isn’t strictly necessary. However, it does not necessarily modify the node, but may return a resultant node if it already exists in the DAG. See comments in UpdateNodeOperands(). In that case, the return value must be used to avoid such scenarios as an infinite loop (node is assumed to have been updated, so added back to the worklist, and re-processed; however, node hasn’t changed so it is once again passed to UpdateNodeOperands(), assumed modified, added back to worklist; cycle infinitely repeats).
Differential Revision: https://reviews.llvm.org/D38466
llvm-svn: 315957
|
|
|
|
|
|
| |
Use less temporary APInts. Use bit counting more. Don't call getScalarSizeInBits so many places, just capture it once.
llvm-svn: 315671
|
|
|
|
| |
llvm-svn: 315670
|